KeyphraseVectorizers 使用指南
2024-09-01 14:03:35作者:郁楠烈Hubert
项目介绍
KeyphraseVectorizers 是一个用于文本分析的 Python 开源库,它专注于从大量文本文档中提取关键词短语,并将这些关键短语转换成文档-关键词矩阵形式。该工具利用词性标注(如spaCy提供的)来识别符合特定词性模式的关键词短语,从而超越了简单的n-gram方法,为用户提供更准确、语法更正确的关键短语。此项目在 GitHub 上托管,支持多种语言处理。
快速启动
要迅速开始使用 KeyphraseVectorizers,首先确保你的环境中已经安装了必要的依赖,包括spaCy和KeyphraseVectorizers本身。接下来的步骤展示如何安装并进行基本的关键词提取:
pip install spacy
python -m spacy download en_core_web_sm # 下载英语模型(如果是其他语言,请下载相应模型)
pip install keyphrase-vectorizers
之后,你可以使用以下Python代码片段来体验KeyphraseVectorizers的基本功能:
from keyphrase_vectorizers import KeyphraseCountVectorizer
import spacy
# 加载spaCy模型
nlp = spacy.load("en_core_web_sm")
# 示例文档
docs = ["Supervised learning involves teaching machines using labeled examples."]
# 初始化KeyphraseCountVectorizer
vectorizer = KeyphraseCountVectorizer(spacy_pipeline=nlp)
# 提取关键词短语
keyphrases = vectorizer.extract_keyphrases(docs)
print(keyphrases)
应用案例和最佳实践
关键词提取结合KeyBERT
KeyphraseVectorizers特别适用于与KeyBERT或其他基于BERT的模型联合使用,以优化关键词提取过程。例如,通过传递KeyphraseCountVectorizer作为参数给KeyBERT,可以在没有固定n-gram范围限制下获取高质量的关键词短语。
from keyphrase_vectorizers import KeyphraseCountVectorizer
from keybert import KeyBERT
kw_model = KeyBERT()
docs = ["This is an example sentence about machine learning techniques."]
keyphrases = kw_model.extract_keywords(docs, vectorizer=KeyphraseCountVectorizer())
print(keyphrases)
典型生态项目
KeyphraseVectorizers与多个文本处理生态项目兼容,尤其是与BERTopic等主题建模工具结合时,能够显著提升主题关键词的质量和相关性。这样的结合允许数据分析师和NLP工程师创建既具有深度又高度相关的主题模型,其中每个主题都伴随着一系列有意义的关键短语,便于理解和解释。
总结,KeyphraseVectorizers是文本分析领域的一个强大工具,尤其适合那些需要深入理解文档内容和自动化关键词发现的场景。结合spaCy的精确词性标注以及现代机器学习模型,它为文档分析提供了丰富的可能性和灵活性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759