Apache DataFusion-Ballista 任务分发策略的可插拔设计
2025-07-09 10:55:50作者:仰钰奇
背景介绍
Apache DataFusion-Ballista 是一个分布式查询执行引擎,它采用了计算与存储分离的架构设计。在分布式执行环境中,如何高效地将任务分配给集群中的各个执行节点是一个关键问题。当前系统已经实现了三种任务分发策略:绑定策略、轮询策略和一致性哈希策略。
现有策略分析
现有的三种分发策略各有特点:
- 绑定策略:将特定任务固定绑定到特定执行节点,适用于需要数据本地性的场景
- 轮询策略:均匀地将任务分配给所有可用节点,实现负载均衡
- 一致性哈希:基于任务特征进行哈希分配,确保相同特征的任务总是分配到相同节点
设计动机
随着使用场景的多样化,固定内置的策略已经不能满足所有需求。特别是在需要实现位置感知任务分配、自定义负载均衡算法或特殊调度需求的场景下,系统需要提供更灵活的扩展机制。
技术方案设计
核心思想是通过定义标准化的分发策略接口,允许用户注入自定义实现。具体设计如下:
-
扩展枚举类型:在现有的
TaskDistributionPolicy枚举中新增Custom变体,包装用户自定义策略 -
定义策略接口:
#[async_trait::async_trait]
pub trait DistributionPolicy: std::fmt::Debug + Send + Sync {
async fn bind_tasks(
&self,
mut slots: Vec<&mut AvailableTaskSlots>,
running_jobs: Arc<HashMap<String, JobInfoCache>>,
) -> datafusion::error::Result<Vec<BoundTask>>;
}
- 接口参数说明:
slots:可用执行槽位列表,可能为空running_jobs:当前运行作业的缓存信息,只读共享- 返回:绑定好的任务-执行器对列表
实现考量
- 线程安全:接口要求实现
Send + Sync,确保策略可以在多线程环境中安全使用 - 异步支持:通过
async_trait宏支持异步操作,适应IO密集型调度场景 - 调试能力:要求实现
Debugtrait,便于问题排查 - 生命周期管理:使用
Arc智能指针管理策略实例,简化内存管理
应用场景
这种可插拔设计可以支持多种高级调度需求:
- 数据本地化调度:根据任务数据位置信息选择最近节点
- 资源感知调度:基于节点实时资源利用率进行动态分配
- 优先级调度:实现任务优先级队列和抢占式调度
- 特殊硬件调度:将特定任务路由到配备GPU等特殊硬件的节点
替代方案对比
直接使用ClusterState::bind_schedulable_tasks虽然可行,但会导致:
- 代码重复:每个自定义策略都需要重新实现核心逻辑
- 维护困难:策略变更可能影响系统稳定性
- 扩展性差:难以支持策略的动态切换和组合
总结
通过引入可插拔的任务分发策略接口,DataFusion-Ballista 在保持核心调度逻辑稳定的同时,为用户提供了极大的灵活性。这种设计遵循了开闭原则,使系统能够适应各种复杂的分布式计算场景,同时保持了代码的整洁性和可维护性。对于需要实现自定义调度算法的用户来说,这一改进将显著降低开发难度,提高系统适配能力。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210