Apache DataFusion-Ballista 任务分发策略的可插拔设计
2025-07-09 18:42:17作者:仰钰奇
背景介绍
Apache DataFusion-Ballista 是一个分布式查询执行引擎,它采用了计算与存储分离的架构设计。在分布式执行环境中,如何高效地将任务分配给集群中的各个执行节点是一个关键问题。当前系统已经实现了三种任务分发策略:绑定策略、轮询策略和一致性哈希策略。
现有策略分析
现有的三种分发策略各有特点:
- 绑定策略:将特定任务固定绑定到特定执行节点,适用于需要数据本地性的场景
- 轮询策略:均匀地将任务分配给所有可用节点,实现负载均衡
- 一致性哈希:基于任务特征进行哈希分配,确保相同特征的任务总是分配到相同节点
设计动机
随着使用场景的多样化,固定内置的策略已经不能满足所有需求。特别是在需要实现位置感知任务分配、自定义负载均衡算法或特殊调度需求的场景下,系统需要提供更灵活的扩展机制。
技术方案设计
核心思想是通过定义标准化的分发策略接口,允许用户注入自定义实现。具体设计如下:
-
扩展枚举类型:在现有的
TaskDistributionPolicy枚举中新增Custom变体,包装用户自定义策略 -
定义策略接口:
#[async_trait::async_trait]
pub trait DistributionPolicy: std::fmt::Debug + Send + Sync {
async fn bind_tasks(
&self,
mut slots: Vec<&mut AvailableTaskSlots>,
running_jobs: Arc<HashMap<String, JobInfoCache>>,
) -> datafusion::error::Result<Vec<BoundTask>>;
}
- 接口参数说明:
slots:可用执行槽位列表,可能为空running_jobs:当前运行作业的缓存信息,只读共享- 返回:绑定好的任务-执行器对列表
实现考量
- 线程安全:接口要求实现
Send + Sync,确保策略可以在多线程环境中安全使用 - 异步支持:通过
async_trait宏支持异步操作,适应IO密集型调度场景 - 调试能力:要求实现
Debugtrait,便于问题排查 - 生命周期管理:使用
Arc智能指针管理策略实例,简化内存管理
应用场景
这种可插拔设计可以支持多种高级调度需求:
- 数据本地化调度:根据任务数据位置信息选择最近节点
- 资源感知调度:基于节点实时资源利用率进行动态分配
- 优先级调度:实现任务优先级队列和抢占式调度
- 特殊硬件调度:将特定任务路由到配备GPU等特殊硬件的节点
替代方案对比
直接使用ClusterState::bind_schedulable_tasks虽然可行,但会导致:
- 代码重复:每个自定义策略都需要重新实现核心逻辑
- 维护困难:策略变更可能影响系统稳定性
- 扩展性差:难以支持策略的动态切换和组合
总结
通过引入可插拔的任务分发策略接口,DataFusion-Ballista 在保持核心调度逻辑稳定的同时,为用户提供了极大的灵活性。这种设计遵循了开闭原则,使系统能够适应各种复杂的分布式计算场景,同时保持了代码的整洁性和可维护性。对于需要实现自定义调度算法的用户来说,这一改进将显著降低开发难度,提高系统适配能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0137
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
502
3.65 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
749
180
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
298
347
一个高性能、可扩展、轻量、省心的仓颉应用开发框架。IoC,Rest,宏路由,Json,中间件,参数绑定与校验,文件上传下载,OAuth2,MCP......
Cangjie
116
21
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.3 K
722
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1