AWS Deep Learning Containers发布PyTorch 2.5.1推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像集合,它集成了主流深度学习框架和工具链,帮助开发者快速部署机器学习工作负载。这些容器镜像经过优化,可直接在Amazon SageMaker、Amazon ECS和Amazon EKS等服务中使用,大幅简化了深度学习环境的配置过程。
近日,AWS Deep Learning Containers项目发布了PyTorch 2.5.1推理专用镜像的两个新版本,分别支持CPU和GPU计算环境。这两个镜像基于Ubuntu 22.04操作系统构建,预装了Python 3.11环境,为PyTorch推理任务提供了开箱即用的解决方案。
CPU版本镜像特性
CPU版本的镜像(pytorch-inference:2.5.1-cpu-py311-ubuntu22.04-sagemaker-v1.20)包含了PyTorch 2.5.1及其相关生态工具:
- 核心组件:torch 2.5.1+cpu、torchvision 0.20.1+cpu、torchaudio 2.5.1+cpu
- 模型服务工具:torchserve 0.12.0和torch-model-archiver 0.12.0
- 数据处理库:numpy 2.1.3、pandas 2.2.3、scikit-learn 1.5.2
- 图像处理:opencv-python 4.10.0.84、pillow 11.0.0
- 系统工具:awscli 1.35.22、boto3 1.35.56等AWS工具链
该镜像特别适合不需要GPU加速的轻量级推理场景,如CPU优化的边缘计算设备或小规模模型服务。
GPU版本镜像特性
GPU版本(pytorch-inference:2.5.1-gpu-py311-cu124-ubuntu22.04-sagemaker-v1.20)针对CUDA 12.4环境进行了优化:
- GPU加速组件:torch 2.5.1+cu124、torchvision 0.20.1+cu124、torchaudio 2.5.1+cu124
- CUDA支持:预装了cuda-command-line-tools-12-4、libcublas-12-4等CUDA库
- 并行计算:包含mpi4py 4.0.1以支持分布式计算
- 其他组件与CPU版本保持一致
这个版本适合需要利用NVIDIA GPU进行高性能推理的场景,能够充分发挥PyTorch在CUDA环境下的计算优势。
技术亮点
-
Python 3.11支持:两个镜像都基于Python 3.11构建,能够利用最新Python版本在性能和功能上的改进。
-
Ubuntu 22.04基础:采用长期支持的Ubuntu 22.04作为基础操作系统,确保系统稳定性和安全性。
-
完整工具链:除了PyTorch核心组件外,还预装了模型服务、数据处理、图像处理等完整工具链,覆盖了从模型部署到服务的全流程需求。
-
AWS生态集成:内置AWS CLI、boto3等工具,便于与AWS云服务无缝集成。
使用场景
这些预构建的PyTorch推理镜像特别适合以下场景:
- 在Amazon SageMaker上快速部署PyTorch模型服务
- 构建自定义的PyTorch推理容器
- 开发测试PyTorch模型推理流程
- 构建端到端的机器学习流水线
AWS Deep Learning Containers通过提供这些经过充分测试和优化的镜像,显著降低了开发者部署PyTorch模型的门槛,使得团队能够更专注于模型开发和业务逻辑,而非环境配置。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00