深入解析Ragbits项目中的分布式文档搜索实现
2025-06-05 22:34:16作者:柏廷章Berta
概述
本文将深入探讨Ragbits项目中基于Qdrant的分布式文档搜索实现。该实现展示了如何利用Ray框架实现文档的分布式处理,构建高效的文档搜索系统。我们将从技术架构、核心组件到实际应用场景进行全面剖析。
技术架构解析
1. 核心组件
该实现由几个关键组件构成:
- LiteLLMEmbedder:负责将文本转换为向量表示,使用OpenAI的text-embedding-3-small模型
- QdrantVectorStore:基于Qdrant向量数据库的存储实现
- RayDistributedIngestStrategy:分布式处理策略,利用Ray框架实现并行处理
- DocumentSearch:文档搜索的核心类,整合了上述组件
2. 分布式处理流程
系统的工作流程如下:
- 文档预处理:将原始文档转换为DocumentMeta对象
- 向量化:通过LiteLLMEmbedder生成文档向量
- 分布式存储:使用Ray框架并行将向量存入Qdrant
- 查询处理:接收查询请求并返回相似文档
关键技术实现细节
1. 文档预处理
示例中展示了如何创建文档集合:
documents = [
DocumentMeta.from_literal("RIP boiled water. You will be mist."),
DocumentMeta.from_literal("Why doesn't James Bond fart in bed? Because it would blow his cover."),
# 更多文档...
]
DocumentMeta.from_literal方法将原始文本转换为标准化的文档对象,为后续处理做准备。
2. 向量化配置
向量化是搜索系统的核心,配置如下:
embedder = LiteLLMEmbedder(
model_name="text-embedding-3-small",
)
这里选择了OpenAI的高效小型嵌入模型,平衡了性能和成本。
3. 向量存储配置
Qdrant向量数据库的配置:
vector_store = QdrantVectorStore(
client=AsyncQdrantClient(host="localhost", port=6333),
index_name="jokes",
embedder=embedder,
)
使用异步客户端连接本地Qdrant实例,并指定索引名称为"jokes"。
4. 分布式处理策略
分布式处理的核心配置:
ingest_strategy = RayDistributedIngestStrategy(batch_size=1)
batch_size=1表示每个Ray任务处理一个文档,可根据实际需求调整。
实际应用示例
1. 系统初始化
完整的系统初始化流程:
document_search = DocumentSearch(
vector_store=vector_store,
ingest_strategy=ingest_strategy,
)
2. 文档导入
使用分布式策略导入文档:
await document_search.ingest(documents)
3. 执行搜索
执行语义搜索的示例:
results = await document_search.search("I'm boiling my water and I need a joke")
系统会返回与查询语义相关的文档。
部署建议
1. Qdrant部署
建议使用Docker容器部署Qdrant:
docker run -p 6333:6333 qdrant/qdrant
2. 性能优化建议
- 根据硬件资源调整Ray的工作节点数量
- 适当增大batch_size以提高吞吐量
- 监控Qdrant的性能指标,必要时进行分片
应用场景
该技术方案适用于:
- 大规模文档检索系统
- 实时语义搜索应用
- 个性化推荐系统
- 知识库问答系统
总结
Ragbits项目的这一实现展示了如何结合现代向量数据库和分布式处理框架构建高效的文档搜索系统。通过Ray实现分布式处理,可以显著提高大规模文档处理的效率,而Qdrant则提供了高性能的向量检索能力。这种架构特别适合需要处理大量文档并实现低延迟搜索的场景。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
416
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
682
160
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
664
React Native鸿蒙化仓库
JavaScript
265
326
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
Ascend Extension for PyTorch
Python
230
259