深入解析Ragbits项目中的分布式文档搜索实现
2025-06-05 18:23:11作者:柏廷章Berta
概述
本文将深入探讨Ragbits项目中基于Qdrant的分布式文档搜索实现。该实现展示了如何利用Ray框架实现文档的分布式处理,构建高效的文档搜索系统。我们将从技术架构、核心组件到实际应用场景进行全面剖析。
技术架构解析
1. 核心组件
该实现由几个关键组件构成:
- LiteLLMEmbedder:负责将文本转换为向量表示,使用OpenAI的text-embedding-3-small模型
- QdrantVectorStore:基于Qdrant向量数据库的存储实现
- RayDistributedIngestStrategy:分布式处理策略,利用Ray框架实现并行处理
- DocumentSearch:文档搜索的核心类,整合了上述组件
2. 分布式处理流程
系统的工作流程如下:
- 文档预处理:将原始文档转换为DocumentMeta对象
- 向量化:通过LiteLLMEmbedder生成文档向量
- 分布式存储:使用Ray框架并行将向量存入Qdrant
- 查询处理:接收查询请求并返回相似文档
关键技术实现细节
1. 文档预处理
示例中展示了如何创建文档集合:
documents = [
DocumentMeta.from_literal("RIP boiled water. You will be mist."),
DocumentMeta.from_literal("Why doesn't James Bond fart in bed? Because it would blow his cover."),
# 更多文档...
]
DocumentMeta.from_literal方法将原始文本转换为标准化的文档对象,为后续处理做准备。
2. 向量化配置
向量化是搜索系统的核心,配置如下:
embedder = LiteLLMEmbedder(
model_name="text-embedding-3-small",
)
这里选择了OpenAI的高效小型嵌入模型,平衡了性能和成本。
3. 向量存储配置
Qdrant向量数据库的配置:
vector_store = QdrantVectorStore(
client=AsyncQdrantClient(host="localhost", port=6333),
index_name="jokes",
embedder=embedder,
)
使用异步客户端连接本地Qdrant实例,并指定索引名称为"jokes"。
4. 分布式处理策略
分布式处理的核心配置:
ingest_strategy = RayDistributedIngestStrategy(batch_size=1)
batch_size=1表示每个Ray任务处理一个文档,可根据实际需求调整。
实际应用示例
1. 系统初始化
完整的系统初始化流程:
document_search = DocumentSearch(
vector_store=vector_store,
ingest_strategy=ingest_strategy,
)
2. 文档导入
使用分布式策略导入文档:
await document_search.ingest(documents)
3. 执行搜索
执行语义搜索的示例:
results = await document_search.search("I'm boiling my water and I need a joke")
系统会返回与查询语义相关的文档。
部署建议
1. Qdrant部署
建议使用Docker容器部署Qdrant:
docker run -p 6333:6333 qdrant/qdrant
2. 性能优化建议
- 根据硬件资源调整Ray的工作节点数量
- 适当增大batch_size以提高吞吐量
- 监控Qdrant的性能指标,必要时进行分片
应用场景
该技术方案适用于:
- 大规模文档检索系统
- 实时语义搜索应用
- 个性化推荐系统
- 知识库问答系统
总结
Ragbits项目的这一实现展示了如何结合现代向量数据库和分布式处理框架构建高效的文档搜索系统。通过Ray实现分布式处理,可以显著提高大规模文档处理的效率,而Qdrant则提供了高性能的向量检索能力。这种架构特别适合需要处理大量文档并实现低延迟搜索的场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
479
3.57 K
React Native鸿蒙化仓库
JavaScript
289
340
Ascend Extension for PyTorch
Python
290
321
暂无简介
Dart
730
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
248
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
451
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言运行时与标准库。
Cangjie
149
885