Robot Framework Language Server 项目教程
1. 项目介绍
Robot Framework Language Server(简称 RFLS)是一个为 Robot Framework 提供语言服务器协议(LSP)支持的开源项目。它主要用于在 Visual Studio Code(VS Code)中提供智能代码补全、语法高亮、错误检查等功能,极大地提升了 Robot Framework 的开发体验。
RFLS 由 Robocorp 开发并维护,旨在为 Robot Framework 开发者提供一个强大的工具集,帮助他们更高效地编写和调试自动化测试脚本。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了 Python 3.7 及以上版本,并且已经安装了 Robot Framework 3.2 及以上版本。
pip install robotframework
2.2 安装 RFLS
你可以通过 pip 安装 RFLS:
pip install robotframework-lsp
2.3 配置 VS Code
- 打开 VS Code。
- 安装 "Robot Framework Language Server" 扩展。
- 打开一个 Robot Framework 项目文件夹。
- 在 VS Code 中打开一个
.robot文件,你将看到语法高亮、代码补全等功能已经启用。
2.4 示例代码
以下是一个简单的 Robot Framework 测试用例示例:
*** Settings ***
Library SeleniumLibrary
*** Test Cases ***
打开百度并搜索
Open Browser https://www.baidu.com chrome
Input Text id=kw Robot Framework
Click Button id=su
Sleep 3s
Close Browser
3. 应用案例和最佳实践
3.1 自动化测试
RFLS 最常见的应用场景是自动化测试。通过结合 Robot Framework 和 RFLS,开发者可以快速编写和调试自动化测试脚本,提高测试效率。
3.2 持续集成
在持续集成(CI)环境中,RFLS 可以帮助开发者快速发现和修复代码中的问题。通过集成到 CI 流程中,可以在代码提交时自动运行测试,并生成详细的测试报告。
3.3 最佳实践
- 模块化测试用例:将测试用例模块化,便于维护和复用。
- 使用变量和资源文件:通过使用变量和资源文件,可以提高测试用例的可读性和可维护性。
- 定期更新依赖:定期更新 RFLS 和 Robot Framework,以确保使用最新的功能和修复。
4. 典型生态项目
4.1 Robocorp Code
Robocorp Code 是 Robocorp 为 VS Code 开发的一个扩展,提供了对 Robot Framework 的全面支持,包括代码补全、调试、任务管理等功能。
4.2 Robot Framework IntelliJ
Robot Framework IntelliJ 是一个为 IntelliJ IDEA 提供的插件,支持 Robot Framework 的开发和调试。
4.3 Robot Framework Interactive
Robot Framework Interactive 是一个交互式工具,允许开发者在命令行中实时运行和调试 Robot Framework 脚本。
通过这些生态项目,开发者可以构建一个完整的 Robot Framework 开发环境,提升开发效率和代码质量。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00