Scikit-Learn教程:数据预处理技术详解
2025-06-07 11:18:05作者:毕习沙Eudora
前言
在机器学习项目中,数据预处理是一个至关重要的环节。本文将基于Scikit-Learn库,深入讲解数据预处理的各项技术及其实现方法。通过本教程,您将掌握如何为机器学习模型准备高质量的数据。
为什么需要数据预处理?
数据预处理对机器学习算法的性能有着直接影响。不同算法对数据特征的敏感度各不相同:
- K最近邻(KNN):基于距离度量的算法,特征缩放至关重要
- 支持向量机(SVM):特别是使用RBF核时,需要标准化数据
- 决策树:对特征尺度不敏感,不需要标准化
- 线性回归:特征缩放可以加速收敛过程
数据预处理的主要目标包括:
- 消除特征间的量纲差异
- 处理缺失值和异常值
- 将分类数据转换为数值形式
- 创建更有意义的特征表示
Scikit-Learn预处理模块
Scikit-Learn提供了sklearn.preprocessing包,包含多种预处理工具:
- 标准化和归一化
- 分类特征编码
- 缺失值填补
- 多项式特征生成
数据集准备
我们以经典的鸢尾花数据集为例:
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
# 加载数据
iris = pd.read_csv('iris.data',
names=['sepal_length', 'sepal_width',
'petal_length', 'petal_width', 'label'])
# 划分特征和标签
X = np.array(iris.drop(['label'], axis=1))
y = np.array(iris['label'])
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
特征缩放技术
1. 标准化(Standardization)
标准化将数据转换为均值为0,标准差为1的分布:
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(X_train)
print("均值:", scaler.mean_)
print("标准差:", scaler.scale_)
# 转换训练集和测试集
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
注意:测试集必须使用训练集的缩放参数进行转换,以避免数据泄露。
2. 最小-最大缩放(MinMax Scaling)
将数据缩放到指定范围(默认为[0,1]):
from sklearn.preprocessing import MinMaxScaler
min_max_scaler = MinMaxScaler(feature_range=(0,1))
X_train_minmax = min_max_scaler.fit_transform(X_train)
X_test_minmax = min_max_scaler.transform(X_test)
3. 最大绝对值缩放(MaxAbs Scaling)
将每个特征缩放到[-1,1]范围,保持数据的稀疏性:
from sklearn.preprocessing import MaxAbsScaler
max_abs_scaler = MaxAbsScaler()
X_train_maxabs = max_abs_scaler.fit_transform(X_train)
X_test_maxabs = max_abs_scaler.transform(X_test)
数据归一化(Normalization)
归一化将样本缩放到单位范数(长度为1):
from sklearn.preprocessing import Normalizer
# 使用L2范数
normalizer = Normalizer(norm='l2')
X_train_normalized = normalizer.fit_transform(X_train)
X_test_normalized = normalizer.transform(X_test)
分类特征编码
1. 标签编码(Label Encoding)
将类别标签转换为数值:
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y_encoded = le.fit_transform(y)
2. 独热编码(One-Hot Encoding)
将分类变量转换为二进制矩阵:
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder()
encoded_data = ohe.fit_transform([[1], [2], [3]]).toarray()
缺失值处理
处理缺失值的常用策略:
from sklearn.preprocessing import Imputer
# 使用均值填补缺失值
imp = Imputer(missing_values='NaN', strategy='mean')
imputed_data = imp.fit_transform([[1, 2], [7, 8], [np.nan, np.nan]])
多项式特征生成
增加模型复杂度的方法:
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2)
X_poly = poly.fit_transform([[1,2,3], [4,5,6]])
预处理最佳实践
- 始终先划分数据集:在预处理前划分训练集和测试集
- 避免数据泄露:测试集只能使用训练集的统计量进行转换
- 管道(Pipeline)使用:将预处理步骤与模型训练结合
- 交叉验证:在交叉验证中包含预处理步骤
总结
数据预处理是机器学习工作流中不可或缺的一环。Scikit-Learn提供了丰富的预处理工具,掌握这些技术将显著提升您的模型性能。记住,没有放之四海而皆准的预处理方法,最佳策略往往取决于您的数据和模型选择。
通过本教程,您已经掌握了Scikit-Learn中主要的预处理技术。在实际项目中,建议结合具体问题选择合适的预处理方法,并通过实验验证其效果。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
317
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
157
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
242
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K