pgBackRest 在修改版 PostgreSQL 中的 WAL 校验问题解析
2025-06-27 22:42:57作者:余洋婵Anita
问题背景
在使用 pgBackRest 进行 PostgreSQL 数据库备份时,用户遇到了一个关于 WAL 校验的问题。具体表现为在执行 pgbackrest --stanza=demo --log-level-console=info check 命令时出现错误,而 stanza-create 命令却能正常执行。
问题分析
从日志中可以发现,错误代码为 82,这表示归档超时(archive timeout)。pgBackRest 在检查过程中无法在允许的超时时间内在存储库中找到预期的归档文件。
深入分析日志后,发现问题的根源在于:
- 用户使用的是修改版的 PostgreSQL 12.7,该版本允许使用 root 用户初始化数据库
- 这种修改可能影响了 PostgreSQL 的控制文件(pg_control)或 WAL 头部的结构
- pgBackRest 默认会对 WAL 文件头部进行校验(magic number 检查),而修改版的 PostgreSQL 可能改变了这些校验值
解决方案
用户最终通过添加 --archive-header-check=n 参数解决了问题。这个参数的作用是禁用 pgBackRest 对 WAL 文件头部的校验检查。
正确的 archive_command 配置应为:
archive_command = 'pgbackrest --archive-header-check=n --stanza=demo archive-push %p'
技术原理
pgBackRest 作为专业的 PostgreSQL 备份工具,默认会对 WAL 文件进行严格校验,包括:
- WAL 文件头部的 magic number 检查
- 文件完整性验证
- 与 pg_control 文件中的系统标识符匹配检查
当使用修改版的 PostgreSQL 时,特别是那些改变了 WAL 格式或 pg_control 文件结构的版本,这些校验可能会失败。--archive-header-check=n 参数允许跳过头部校验,使得备份过程能够继续进行。
注意事项
虽然禁用 WAL 头部校验可以解决眼前的问题,但需要注意:
- 这可能会掩盖潜在的数据一致性问题
- 官方仅对原版 PostgreSQL 进行测试和支持
- 使用修改版数据库时,建议咨询该版本的维护者是否支持 pgBackRest
- 长期解决方案应考虑使用未经修改的 PostgreSQL 版本
最佳实践
对于需要在特殊环境下使用 pgBackRest 的用户,建议:
- 充分了解所用 PostgreSQL 版本的修改内容
- 在测试环境中验证备份和恢复流程
- 记录所有必要的参数调整
- 定期验证备份的可用性
通过合理配置和充分测试,即使在特殊环境下,pgBackRest 仍然可以提供可靠的备份解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1