开源项目教程:Mapping Challenge
2024-08-30 12:07:40作者:滕妙奇
1. 项目的目录结构及介绍
open-solution-mapping-challenge/
├── data/
│ ├── processed/
│ └── raw/
├── src/
│ ├── models/
│ ├── preprocessing/
│ └── utils/
├── config/
├── notebooks/
├── README.md
├── requirements.txt
└── setup.py
- data/: 存储数据文件,包括处理后的数据和原始数据。
- src/: 包含项目的源代码,分为模型、预处理和工具类。
- config/: 存放项目的配置文件。
- notebooks/: 用于存放Jupyter笔记本文件,方便进行数据分析和实验。
- README.md: 项目说明文档。
- requirements.txt: 项目依赖的Python库列表。
- setup.py: 项目的安装脚本。
2. 项目的启动文件介绍
项目的启动文件通常位于src/目录下,具体文件名可能因项目而异。以下是一个常见的启动文件示例:
# src/main.py
import argparse
from config import Config
from src.models import Model
from src.preprocessing import preprocess
def main():
parser = argparse.ArgumentParser(description="Mapping Challenge")
parser.add_argument("--config", type=str, default="config/default.yaml", help="Path to configuration file")
args = parser.parse_args()
config = Config(args.config)
data = preprocess(config)
model = Model(config)
model.train(data)
if __name__ == "__main__":
main()
- main.py: 项目的入口文件,负责解析命令行参数、加载配置、预处理数据和训练模型。
3. 项目的配置文件介绍
配置文件通常位于config/目录下,以YAML或JSON格式存储。以下是一个配置文件示例:
# config/default.yaml
data:
path: "data/raw"
processed_path: "data/processed"
model:
type: "unet"
epochs: 10
batch_size: 16
training:
optimizer: "adam"
learning_rate: 0.001
- default.yaml: 包含数据路径、模型参数和训练参数的配置文件。
- data: 数据路径配置。
- model: 模型类型、训练轮数和批次大小等参数。
- training: 优化器和学习率等训练参数。
以上是基于开源项目open-solution-mapping-challenge的教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些内容能帮助你更好地理解和使用该项目。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
650
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216