Microsoft.Extensions.AI 中 Ollama 结构化 JSON 输出的实现解析
2025-06-27 18:56:06作者:沈韬淼Beryl
在人工智能应用开发中,结构化输出对于确保模型返回数据的可预测性和可用性至关重要。Microsoft.Extensions.AI 作为 .NET 生态中的人工智能扩展库,近期针对 Ollama 模型服务新增了对结构化 JSON 输出的支持。
结构化输出的技术背景
结构化输出允许开发者预先定义返回数据的格式和类型约束,确保语言模型的响应符合预期的数据结构。Ollama 最新版本引入的这项功能通过 JSON Schema 规范来实现,开发者可以指定:
- 输出对象的属性及其数据类型
- 数组元素的类型约束
- 必填字段的验证规则
Microsoft.Extensions.AI 的实现机制
该库通过 ChatResponseFormat 枚举和辅助方法提供了三种输出格式控制方式:
- 文本格式:基础的文本响应
- 自由JSON格式:不限定结构的JSON响应
- 结构化JSON格式:通过
ForJsonSchema方法指定严格的JSON Schema约束
核心实现类 OllamaChatClient 需要将这些格式要求转换为 Ollama API 能够理解的请求参数。对于结构化输出,需要将 .NET 类型定义转换为标准的 JSON Schema 描述。
实际应用示例
开发者可以通过以下方式使用结构化输出功能:
var schema = AIJsonUtilities.GenerateSchema(typeof(CountryInfo));
var options = new ChatOptions
{
ResponseFormat = ChatResponseFormat.ForJsonSchema(schema)
};
其中 CountryInfo 是定义预期结构的 DTO 类:
public class CountryInfo
{
public string Name { get; set; }
public string Capital { get; set; }
public List<string> Languages { get; set; }
}
技术实现要点
- 类型转换:利用 System.Text.Json 的反射能力自动生成 JSON Schema
- 请求构造:将 Schema 转换为 Ollama API 要求的格式参数
- 响应验证:确保返回数据符合预定结构
最佳实践建议
- 对于简单场景,直接使用
ResponseFormat.Json即可 - 需要严格数据契约时,采用结构化输出
- 考虑为常用数据结构创建可复用的 Schema 定义
- 在 API 边界处验证模型输出,确保系统健壮性
这项功能的加入显著提升了 .NET 应用与 Ollama 模型集成的可靠性和开发效率,特别是在需要强类型数据的业务场景中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134