Apache DataFusion 47.0.0 版本发布技术解析
Apache DataFusion 作为高性能查询执行框架,即将迎来47.0.0版本的发布。本次更新包含多项性能优化、功能增强和重要修复,为分布式查询处理带来了显著改进。
核心功能增强
在47.0.0版本中,开发团队重点优化了查询执行性能。通过重新设计过滤条件下推机制,系统现在能够更智能地识别和处理无操作表达式,如布尔值常量。虽然这一改进提升了整体性能,但需要注意它可能对某些缓存实现产生细微影响。
针对窗口函数处理,团队修复了last_value函数的回归问题,确保了窗口函数行为的稳定性。同时,对Decimal类型的比较操作进行了扩展,现在支持不同精度和小数位数的Decimal值之间的比较操作。
执行计划与优化器改进
新版本对执行计划的显示格式进行了调整,引入了TreeRender显示类型。这一变化要求所有自定义执行计划实现相应处理逻辑。物理表达式映射机制也有所改变,移除了map_partial_batch方法,简化了批处理映射流程。
在查询优化方面,47.0.0版本改进了连接操作的处理逻辑。现在明确将空连接条件视为错误情况,这一变化体现在LogicalPlanBuilder的join_on和join_detailed方法中。
数据源与格式支持
Parquet文件处理能力得到增强,移除了page_pruning_predicate的公共API接口。这一变化是内部重构的一部分,旨在简化Parquet数据源的实现。同时,团队正在评估是否在本版本中升级Arrow依赖至55版本,以获得改进的INT96支持。
用户自定义函数变更
47.0.0版本清理了ScalarUDFImpl中的废弃方法,移除了所有标记为过时的UDF调用接口。使用自定义函数的项目需要相应调整代码,迁移到新的API接口。
兼容性说明
本次更新包含多项破坏性变更,需要用户特别注意:
- 执行计划显示格式需要支持TreeRender类型
- 移除了SchemaMapper中的map_partial_batch方法
- Parquet数据源不再公开page_pruning_predicate接口
- 废弃的ScalarUDFImpl方法已被移除
- 空连接条件现在会触发错误
性能优化
47.0.0版本包含多项性能改进,特别是针对复杂查询的执行效率。团队优化了内存使用和CPU利用率,在TPC-H等基准测试中显示出显著的性能提升。
社区生态适配
DataFusion团队与多个下游项目密切合作,包括DataFusion Comet、Delta.rs、SailHQ和Parquet Viewer等,确保47.0.0版本的平滑升级。这些项目已经完成了兼容性测试,验证了新版本的稳定性。
升级建议
对于计划升级到47.0.0版本的用户,建议:
- 仔细阅读完整的升级指南
- 检查自定义执行计划的显示逻辑
- 更新使用废弃UDF API的代码
- 验证连接条件是否为空的情况
- 测试Parquet数据源相关功能
本次发布体现了DataFusion项目对性能、稳定性和易用性的持续追求,为分布式数据处理提供了更强大的基础能力。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00