Apache DataFusion 47.0.0 版本发布技术解析
Apache DataFusion 作为高性能查询执行框架,即将迎来47.0.0版本的发布。本次更新包含多项性能优化、功能增强和重要修复,为分布式查询处理带来了显著改进。
核心功能增强
在47.0.0版本中,开发团队重点优化了查询执行性能。通过重新设计过滤条件下推机制,系统现在能够更智能地识别和处理无操作表达式,如布尔值常量。虽然这一改进提升了整体性能,但需要注意它可能对某些缓存实现产生细微影响。
针对窗口函数处理,团队修复了last_value函数的回归问题,确保了窗口函数行为的稳定性。同时,对Decimal类型的比较操作进行了扩展,现在支持不同精度和小数位数的Decimal值之间的比较操作。
执行计划与优化器改进
新版本对执行计划的显示格式进行了调整,引入了TreeRender显示类型。这一变化要求所有自定义执行计划实现相应处理逻辑。物理表达式映射机制也有所改变,移除了map_partial_batch方法,简化了批处理映射流程。
在查询优化方面,47.0.0版本改进了连接操作的处理逻辑。现在明确将空连接条件视为错误情况,这一变化体现在LogicalPlanBuilder的join_on和join_detailed方法中。
数据源与格式支持
Parquet文件处理能力得到增强,移除了page_pruning_predicate的公共API接口。这一变化是内部重构的一部分,旨在简化Parquet数据源的实现。同时,团队正在评估是否在本版本中升级Arrow依赖至55版本,以获得改进的INT96支持。
用户自定义函数变更
47.0.0版本清理了ScalarUDFImpl中的废弃方法,移除了所有标记为过时的UDF调用接口。使用自定义函数的项目需要相应调整代码,迁移到新的API接口。
兼容性说明
本次更新包含多项破坏性变更,需要用户特别注意:
- 执行计划显示格式需要支持TreeRender类型
- 移除了SchemaMapper中的map_partial_batch方法
- Parquet数据源不再公开page_pruning_predicate接口
- 废弃的ScalarUDFImpl方法已被移除
- 空连接条件现在会触发错误
性能优化
47.0.0版本包含多项性能改进,特别是针对复杂查询的执行效率。团队优化了内存使用和CPU利用率,在TPC-H等基准测试中显示出显著的性能提升。
社区生态适配
DataFusion团队与多个下游项目密切合作,包括DataFusion Comet、Delta.rs、SailHQ和Parquet Viewer等,确保47.0.0版本的平滑升级。这些项目已经完成了兼容性测试,验证了新版本的稳定性。
升级建议
对于计划升级到47.0.0版本的用户,建议:
- 仔细阅读完整的升级指南
- 检查自定义执行计划的显示逻辑
- 更新使用废弃UDF API的代码
- 验证连接条件是否为空的情况
- 测试Parquet数据源相关功能
本次发布体现了DataFusion项目对性能、稳定性和易用性的持续追求,为分布式数据处理提供了更强大的基础能力。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00