如何使用 Apache SkyWalking Kong Agent 实现 API 网关的性能监控
引言
在现代微服务架构中,API 网关扮演着至关重要的角色,它不仅负责路由请求,还承担着负载均衡、安全认证、日志记录等多项功能。随着系统复杂性的增加,API 网关的性能监控变得尤为重要。通过有效的监控,我们可以及时发现并解决性能瓶颈,确保系统的稳定性和高效性。
Apache SkyWalking Kong Agent 是一个专为 Kong API 网关设计的监控工具,它基于 SkyWalking Nginx Lua Agent,能够为 Apache SkyWalking APM 提供详细的性能追踪数据。使用该工具,开发者可以轻松地监控 Kong API 网关的性能,识别潜在问题,并进行优化。
本文将详细介绍如何使用 Apache SkyWalking Kong Agent 完成 API 网关的性能监控任务,帮助你更好地理解和应用这一工具。
准备工作
环境配置要求
在开始使用 Apache SkyWalking Kong Agent 之前,确保你的环境满足以下要求:
- Kong 版本:Kong 2.2 及以上版本。
- LuaRocks:用于安装 Kong 插件的 Lua 包管理工具。
- SkyWalking 后端:确保 SkyWalking 后端服务已启动并运行,默认端口为 12800。
所需数据和工具
- Kong 配置文件:
kong.conf,用于配置 Kong 插件。 - SkyWalking 后端 URI:用于接收和处理监控数据。
- Luarocks:用于安装
kong-skywalking插件。
模型使用步骤
数据预处理方法
在使用 Apache SkyWalking Kong Agent 之前,无需进行复杂的数据预处理。只需确保 Kong API 网关正常运行,并且 SkyWalking 后端服务已启动。
模型加载和配置
-
安装插件: 使用
luarocks安装kong-skywalking插件:$ luarocks install kong-skywalking --local -
编辑 Kong 配置文件: 在
kong.conf中添加以下配置:plugins = bundled,skywalking lua_package_path = ${user.home}/.luarocks/share/lua/5.1/?.lua;; -
设置环境变量: 配置 Kong 的共享内存:
$ export KONG_NGINX_HTTP_LUA_SHARED_DICT="tracing_buffer 128m" -
重启 Kong: 完成配置后,重启 Kong 以使更改生效。
任务执行流程
-
启用插件: 通过以下命令将
skywalking插件添加到全局配置中:$ curl -X POST --url http://localhost:8001/plugins/ \ --data 'name=skywalking' \ --data 'config.backend_http_uri=http://localhost:12800' \ --data 'config.sample_ratio=100' \ --data 'config.service_name=kong' \ --data 'config.service_instance_name=kong-with-skywalking' -
监控数据收集: 插件启用后,Kong 将自动将性能数据发送到 SkyWalking 后端,SkyWalking 会生成详细的性能报告。
结果分析
输出结果的解读
SkyWalking 后端会生成详细的性能报告,包括请求延迟、错误率、吞吐量等关键指标。通过这些数据,你可以直观地了解 Kong API 网关的性能表现。
性能评估指标
- 请求延迟:衡量 API 响应时间的指标,延迟越低,性能越好。
- 错误率:反映系统稳定性的指标,错误率越低,系统越稳定。
- 吞吐量:表示系统处理请求的能力,吞吐量越高,系统处理能力越强。
结论
Apache SkyWalking Kong Agent 为 Kong API 网关的性能监控提供了强大的支持。通过简单的配置和部署,开发者可以轻松地获取详细的性能数据,帮助识别和解决潜在的性能问题。
优化建议
- 调整采样率:根据实际需求调整
sample_ratio,以平衡性能监控的精度和系统开销。 - 扩展 SkyWalking 后端:在高并发场景下,考虑扩展 SkyWalking 后端以提高数据处理能力。
通过合理使用 Apache SkyWalking Kong Agent,你可以显著提升 API 网关的性能监控能力,确保系统的稳定性和高效性。
本文详细介绍了如何使用 Apache SkyWalking Kong Agent 完成 API 网关的性能监控任务。希望这篇文章能帮助你更好地理解和应用这一工具,提升系统的监控和优化能力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00