Trulens项目中AzureOpenAI提供商的令牌使用统计问题分析
2025-07-01 22:39:33作者:幸俭卉
问题背景
在Trulens项目中使用AzureOpenAI作为提供商时,开发人员发现了一个重要功能缺失:系统无法正确显示令牌使用情况和相关费用统计。这个问题在评估RAG(检索增强生成)应用的各项指标时尤为明显,如答案相关性(Answer Relevance)和基础性(Groundedness)等评估指标。
技术细节分析
核心问题表现
当开发人员配置AzureOpenAI作为LLM提供商时,虽然模型调用和评估功能可以正常工作,但在以下方面出现了统计缺失:
- 令牌使用量始终显示为0
- 相关费用计算无法正常显示
- 影响所有使用AzureOpenAI作为评估提供商的场景
典型配置示例
开发人员通常会按照以下方式配置AzureOpenAI提供商:
from trulens_eval.feedback.provider.openai import AzureOpenAI as fAzureOpenai
openai_provider = fAzureOpenai(deployment_name="chat_test")
然后创建评估反馈函数:
f_qa_relevance = (
Feedback(
openai_provider.relevance_with_cot_reasons,
name = "Answer Relevance",
)
.on(Select.RecordCalls.retrieve.args.query)
.on_output()
)
底层原因推测
经过技术分析,这个问题可能源于以下几个技术层面:
-
API响应解析不完整:AzureOpenAI的API响应可能采用了与标准OpenAI不同的格式,导致令牌使用数据未被正确提取。
-
成本跟踪实现缺失:AzureOpenAI提供商类中可能缺少完整的成本跟踪实现,特别是在处理部署名称(deployment_name)等Azure特有参数时。
-
环境变量配置依赖:系统可能依赖于特定的环境变量配置来启用成本跟踪功能,而这些配置在Azure环境下可能有特殊要求。
解决方案建议
针对这一问题,技术专家建议采取以下解决方案:
-
环境配置验证:
- 确保所有必要的Azure环境变量已正确配置
- 验证API版本和终端点设置
-
代码层面修复:
- 在AzureOpenAI提供商类中完善成本跟踪逻辑
- 确保能够正确解析Azure特有的API响应格式
- 添加适当的日志记录以帮助调试
-
版本兼容性检查:
- 确认使用的Trulens版本是否包含最新的Azure支持修复
- 考虑升级到最新版本以获取可能的修复
对开发实践的影响
这个问题提醒开发者在集成云服务提供商时需要注意:
- 不同云提供商可能有细微但重要的API差异
- 监控和成本跟踪功能需要针对每个提供商单独验证
- 在评估流程中,准确的令牌统计对于成本控制和性能优化至关重要
总结
Trulens项目中AzureOpenAI提供商的令牌统计问题是一个典型的云服务集成挑战。解决这一问题不仅需要修复代码层面的实现,还需要开发者深入理解不同云服务提供商的API特性。对于依赖成本监控的生产环境应用,确保这类统计功能的准确性应该是集成测试的重要环节。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C073
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
460
3.43 K
暂无简介
Dart
713
170
Ascend Extension for PyTorch
Python
267
304
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
186
71
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
842
417
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
446
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119