SuperCollider在Ubuntu 22.04上的Qt版本选择问题解析
在Linux系统上构建SuperCollider时,当系统中同时安装了Qt5和Qt6两个版本时,构建系统会优先选择Qt5而非Qt6。本文将详细分析这个问题的原因,并提供解决方案。
问题现象
在Ubuntu 22.04系统上,当同时安装了Qt5和Qt6开发包后,执行CMake配置时,SuperCollider会默认选择Qt5进行构建。这不符合项目期望的行为,因为SuperCollider更倾向于使用较新的Qt6版本。
问题根源
通过分析SuperCollider的CMake构建脚本,发现问题出在Qt版本检测的逻辑上。在QtCollider/CMakeLists.txt文件中,原始代码使用Qt6_FOUND变量来判断是否找到了Qt6,但实际上应该使用QT_FOUND变量。
这是因为CMake的find_package命令会根据指定的包名设置对应的_FOUND变量。当使用find_package(QT NAMES Qt6...)时,正确的变量名应该是QT_FOUND而非Qt6_FOUND。
解决方案
修改QtCollider/CMakeLists.txt文件中的条件判断,将Qt6_FOUND替换为QT_FOUND。具体修改如下:
# 原始代码
find_package(QT NAMES Qt6 ${REQUIRED_QT_VERSION} QUIET COMPONENTS Core)
if (NOT Qt6_FOUND)
set(REQUIRED_QT_VERSION 5.15)
find_package(QT NAMES Qt5 ${REQUIRED_QT_VERSION} QUIET COMPONENTS Core)
endif()
# 修改后代码
find_package(QT NAMES Qt6 ${REQUIRED_QT_VERSION} QUIET COMPONENTS Core)
if (NOT QT_FOUND)
set(REQUIRED_QT_VERSION 5.15)
find_package(QT NAMES Qt5 ${REQUIRED_QT_VERSION} QUIET COMPONENTS Core)
endif()
验证结果
经过修改后,在同时安装了Qt5和Qt6的Ubuntu 22.04系统上,SuperCollider现在能够正确地优先选择Qt6进行构建。当Qt6不可用时,才会回退到Qt5。
补充说明
对于使用Qt6构建的SuperCollider,还需要确保安装了libqt6webenginecore6-bin包,否则SC IDE可能无法正常启动,并报错"Could not find QtWebEngineProcess"。这个依赖项应该在Linux系统的安装说明中明确列出。
结论
通过修正CMake脚本中的变量名,SuperCollider现在能够在多Qt版本环境下正确选择优先使用Qt6。这个修改既保持了向后兼容性(当Qt6不可用时回退到Qt5),又确保了新版本Qt的优先使用,符合项目的长期发展方向。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00