ACDC2017:自动心脏诊断挑战赛代码库使用教程
1. 项目介绍
ACDC2017是MIC-DKFZ团队在2017年自动心脏诊断挑战赛中使用的代码库。该团队在比赛的分割部分荣获第一名,实现了所有类别及时间步(收缩末期/舒张末期)的最高Dice分数。论文扩展版发表于MICCAI STACOM会议,并且可以在arXiv上找到预印本。挑战赛的排行榜位于ACDC官方网站,但需要注意的是,查看需登录账户。遗憾地是,该项目目前不支持Windows系统,因为其训练过程中使用的BatchGenerators尚未兼容Windows环境。
2. 快速启动
要开始使用此项目,确保您有一个适合的Linux或macOS环境,并配备有至少12GB VRAM的GPU。以下命令用于训练2D和3D UNet模型:
# 训练2D UNet
python run_training_2D.py -f FOLD -c PATH_TO_CONFIG_2D
# 训练3D UNet
python run_training_3D.py -f FOLD -c PATH_TO_CONFIG_3D
其中,FOLD是交叉验证的折叠ID(0到4),而PATH_TO_CONFIG_2D和PATH_TO_CONFIG_3D分别指向配置文件UNet2D_config.py和UNet3D_config.py的路径。为了预测测试集,你需要对2D和3D UNet训练所有的五个折叠,并利用产生的十个网络作为集成来获取结果。验证过程通过类似命令执行:
# 运行2D UNet的验证
python run_validation_2D.py -f FOLD -c PATH_TO_CONFIG_2D
# 运行3D UNet的验证
python run_validation_3D.py -f FOLD -c PATH_TO_CONFIG_3D
3. 应用案例和最佳实践
最佳实践中,首先确保你的数据准备无误,并调整配置文件中的超参数以适应特定任务需求。例如,对于不同的心脏MRI数据集,可能需要微调学习率、批次大小或者网络架构。此外,利用项目提供的交叉验证机制可以有效评估模型的泛化能力,确保每个折都能得到充分训练以构建强大的集成模型。
4. 典型生态项目
由于该项目是围绕医学图像处理和深度学习的具体应用——心脏病诊断——开发的,它的生态项目通常包括其他医疗影像分析工具和库。例如,与之相辅相成的可能是ITK-SNAP用于手动标注心腔边界,或是TensorBoard用于监视训练进展和模型性能。此外,研究者可能会结合PyRadiomics进行特征提取,或是在Monai框架下进一步优化和部署模型,虽然这些并非ACDC2017项目的直接组成部分,但它们构成了医疗影像AI研究和应用的广泛生态系统。
请注意,运行此项目前应详细阅读仓库内的README.md以及相关文献,确保理解所有先决条件和步骤,以避免潜在的兼容性问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00