ACDC2017:自动心脏诊断挑战赛代码库使用教程
1. 项目介绍
ACDC2017是MIC-DKFZ团队在2017年自动心脏诊断挑战赛中使用的代码库。该团队在比赛的分割部分荣获第一名,实现了所有类别及时间步(收缩末期/舒张末期)的最高Dice分数。论文扩展版发表于MICCAI STACOM会议,并且可以在arXiv上找到预印本。挑战赛的排行榜位于ACDC官方网站,但需要注意的是,查看需登录账户。遗憾地是,该项目目前不支持Windows系统,因为其训练过程中使用的BatchGenerators尚未兼容Windows环境。
2. 快速启动
要开始使用此项目,确保您有一个适合的Linux或macOS环境,并配备有至少12GB VRAM的GPU。以下命令用于训练2D和3D UNet模型:
# 训练2D UNet
python run_training_2D.py -f FOLD -c PATH_TO_CONFIG_2D
# 训练3D UNet
python run_training_3D.py -f FOLD -c PATH_TO_CONFIG_3D
其中,FOLD是交叉验证的折叠ID(0到4),而PATH_TO_CONFIG_2D和PATH_TO_CONFIG_3D分别指向配置文件UNet2D_config.py和UNet3D_config.py的路径。为了预测测试集,你需要对2D和3D UNet训练所有的五个折叠,并利用产生的十个网络作为集成来获取结果。验证过程通过类似命令执行:
# 运行2D UNet的验证
python run_validation_2D.py -f FOLD -c PATH_TO_CONFIG_2D
# 运行3D UNet的验证
python run_validation_3D.py -f FOLD -c PATH_TO_CONFIG_3D
3. 应用案例和最佳实践
最佳实践中,首先确保你的数据准备无误,并调整配置文件中的超参数以适应特定任务需求。例如,对于不同的心脏MRI数据集,可能需要微调学习率、批次大小或者网络架构。此外,利用项目提供的交叉验证机制可以有效评估模型的泛化能力,确保每个折都能得到充分训练以构建强大的集成模型。
4. 典型生态项目
由于该项目是围绕医学图像处理和深度学习的具体应用——心脏病诊断——开发的,它的生态项目通常包括其他医疗影像分析工具和库。例如,与之相辅相成的可能是ITK-SNAP用于手动标注心腔边界,或是TensorBoard用于监视训练进展和模型性能。此外,研究者可能会结合PyRadiomics进行特征提取,或是在Monai框架下进一步优化和部署模型,虽然这些并非ACDC2017项目的直接组成部分,但它们构成了医疗影像AI研究和应用的广泛生态系统。
请注意,运行此项目前应详细阅读仓库内的README.md以及相关文献,确保理解所有先决条件和步骤,以避免潜在的兼容性问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00