ACDC2017:自动心脏诊断挑战赛代码库使用教程
1. 项目介绍
ACDC2017是MIC-DKFZ团队在2017年自动心脏诊断挑战赛中使用的代码库。该团队在比赛的分割部分荣获第一名,实现了所有类别及时间步(收缩末期/舒张末期)的最高Dice分数。论文扩展版发表于MICCAI STACOM会议,并且可以在arXiv上找到预印本。挑战赛的排行榜位于ACDC官方网站,但需要注意的是,查看需登录账户。遗憾地是,该项目目前不支持Windows系统,因为其训练过程中使用的BatchGenerators
尚未兼容Windows环境。
2. 快速启动
要开始使用此项目,确保您有一个适合的Linux或macOS环境,并配备有至少12GB VRAM的GPU。以下命令用于训练2D和3D UNet模型:
# 训练2D UNet
python run_training_2D.py -f FOLD -c PATH_TO_CONFIG_2D
# 训练3D UNet
python run_training_3D.py -f FOLD -c PATH_TO_CONFIG_3D
其中,FOLD
是交叉验证的折叠ID(0到4),而PATH_TO_CONFIG_2D
和PATH_TO_CONFIG_3D
分别指向配置文件UNet2D_config.py
和UNet3D_config.py
的路径。为了预测测试集,你需要对2D和3D UNet训练所有的五个折叠,并利用产生的十个网络作为集成来获取结果。验证过程通过类似命令执行:
# 运行2D UNet的验证
python run_validation_2D.py -f FOLD -c PATH_TO_CONFIG_2D
# 运行3D UNet的验证
python run_validation_3D.py -f FOLD -c PATH_TO_CONFIG_3D
3. 应用案例和最佳实践
最佳实践中,首先确保你的数据准备无误,并调整配置文件中的超参数以适应特定任务需求。例如,对于不同的心脏MRI数据集,可能需要微调学习率、批次大小或者网络架构。此外,利用项目提供的交叉验证机制可以有效评估模型的泛化能力,确保每个折都能得到充分训练以构建强大的集成模型。
4. 典型生态项目
由于该项目是围绕医学图像处理和深度学习的具体应用——心脏病诊断——开发的,它的生态项目通常包括其他医疗影像分析工具和库。例如,与之相辅相成的可能是ITK-SNAP用于手动标注心腔边界,或是TensorBoard用于监视训练进展和模型性能。此外,研究者可能会结合PyRadiomics进行特征提取,或是在Monai框架下进一步优化和部署模型,虽然这些并非ACDC2017项目的直接组成部分,但它们构成了医疗影像AI研究和应用的广泛生态系统。
请注意,运行此项目前应详细阅读仓库内的README.md
以及相关文献,确保理解所有先决条件和步骤,以避免潜在的兼容性问题。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









