DBDA-Python 项目使用教程
1. 项目的目录结构及介绍
DBDA-Python 项目的目录结构如下:
DBDA-python/
├── Notebooks/
│ ├── Chapter_09_Hierarchical_Models.ipynb
│ ├── Chapter_10_Model_Comparison_and_Hierarchical_Modelling.ipynb
│ ├── ...
├── .gitignore
├── LICENSE
├── README.md
目录结构介绍
-
Notebooks/: 该目录包含了多个 Jupyter Notebook 文件,每个文件对应《Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan》第二版中的一个章节。这些 Notebook 文件包含了 Python/PyMC3 代码,用于实现书中的模型和生成图表。
-
.gitignore: 该文件用于指定 Git 版本控制系统中需要忽略的文件和目录。
-
LICENSE: 该文件包含了项目的开源许可证信息,本项目使用 MIT 许可证。
-
README.md: 该文件是项目的说明文档,包含了项目的简介、使用方法、依赖库等信息。
2. 项目的启动文件介绍
DBDA-Python 项目没有传统的“启动文件”,因为所有的代码都以 Jupyter Notebook 的形式组织在 Notebooks/
目录下。要启动项目,您需要按照以下步骤操作:
-
安装依赖库: 确保您已经安装了项目所需的 Python 库,包括
pymc3
,theano
,pandas
,numpy
,scipy
,matplotlib
,seaborn
等。您可以使用以下命令安装这些库:pip install pymc3 theano pandas numpy scipy matplotlib seaborn
-
启动 Jupyter Notebook: 在项目根目录下启动 Jupyter Notebook 服务器:
jupyter notebook
-
打开 Notebook: 在 Jupyter Notebook 界面中,导航到
Notebooks/
目录,选择您感兴趣的章节对应的 Notebook 文件(例如Chapter_09_Hierarchical_Models.ipynb
),然后开始运行代码。
3. 项目的配置文件介绍
DBDA-Python 项目没有专门的配置文件,所有的配置和参数都在 Jupyter Notebook 文件中直接定义和使用。如果您需要修改某些参数或配置,可以直接在相应的 Notebook 文件中进行编辑。
示例:修改参数
例如,在 Chapter_09_Hierarchical_Models.ipynb
中,您可以找到类似以下的代码片段:
import pymc3 as pm
with pm.Model() as hierarchical_model:
# 定义模型参数
mu = pm.Normal('mu', mu=0, sigma=10)
sigma = pm.HalfNormal('sigma', sigma=10)
# 其他模型定义...
如果您需要修改 mu
或 sigma
的初始值,可以直接在代码中进行修改。
通过以上步骤,您可以顺利地启动和使用 DBDA-Python 项目,并根据需要进行配置和参数调整。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~055CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









