DBDA-Python 项目使用教程
1. 项目的目录结构及介绍
DBDA-Python 项目的目录结构如下:
DBDA-python/
├── Notebooks/
│ ├── Chapter_09_Hierarchical_Models.ipynb
│ ├── Chapter_10_Model_Comparison_and_Hierarchical_Modelling.ipynb
│ ├── ...
├── .gitignore
├── LICENSE
├── README.md
目录结构介绍
-
Notebooks/: 该目录包含了多个 Jupyter Notebook 文件,每个文件对应《Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan》第二版中的一个章节。这些 Notebook 文件包含了 Python/PyMC3 代码,用于实现书中的模型和生成图表。
-
.gitignore: 该文件用于指定 Git 版本控制系统中需要忽略的文件和目录。
-
LICENSE: 该文件包含了项目的开源许可证信息,本项目使用 MIT 许可证。
-
README.md: 该文件是项目的说明文档,包含了项目的简介、使用方法、依赖库等信息。
2. 项目的启动文件介绍
DBDA-Python 项目没有传统的“启动文件”,因为所有的代码都以 Jupyter Notebook 的形式组织在 Notebooks/ 目录下。要启动项目,您需要按照以下步骤操作:
-
安装依赖库: 确保您已经安装了项目所需的 Python 库,包括
pymc3,theano,pandas,numpy,scipy,matplotlib,seaborn等。您可以使用以下命令安装这些库:pip install pymc3 theano pandas numpy scipy matplotlib seaborn -
启动 Jupyter Notebook: 在项目根目录下启动 Jupyter Notebook 服务器:
jupyter notebook -
打开 Notebook: 在 Jupyter Notebook 界面中,导航到
Notebooks/目录,选择您感兴趣的章节对应的 Notebook 文件(例如Chapter_09_Hierarchical_Models.ipynb),然后开始运行代码。
3. 项目的配置文件介绍
DBDA-Python 项目没有专门的配置文件,所有的配置和参数都在 Jupyter Notebook 文件中直接定义和使用。如果您需要修改某些参数或配置,可以直接在相应的 Notebook 文件中进行编辑。
示例:修改参数
例如,在 Chapter_09_Hierarchical_Models.ipynb 中,您可以找到类似以下的代码片段:
import pymc3 as pm
with pm.Model() as hierarchical_model:
# 定义模型参数
mu = pm.Normal('mu', mu=0, sigma=10)
sigma = pm.HalfNormal('sigma', sigma=10)
# 其他模型定义...
如果您需要修改 mu 或 sigma 的初始值,可以直接在代码中进行修改。
通过以上步骤,您可以顺利地启动和使用 DBDA-Python 项目,并根据需要进行配置和参数调整。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00