Transformers项目中FastAPI与LLM推理的VRAM内存泄漏问题分析
2025-04-26 23:21:01作者:冯梦姬Eddie
在基于Transformers库开发LLM推理服务时,许多开发者会遇到一个常见但棘手的问题——随着API调用次数的增加,GPU显存(VRAM)使用量不断攀升且无法自动释放,最终导致内存溢出(OOM)错误。本文将以一个典型场景为例,深入分析该问题的成因及解决方案。
问题现象
开发者在使用FastAPI框架部署Llama-3.2-1B-Instruct模型时,观察到以下现象:
- 初始显存占用约为3GB(包含系统其他进程)
- 每次调用推理API后,显存占用逐步增加
- 峰值显存达到22GB左右(显卡总容量24GB)
- 最终出现OOM错误,服务崩溃
- 即使停止调用API,显存也不会自动释放
技术背景
这种现象属于典型的GPU显存泄漏问题。在PyTorch框架下,GPU显存管理遵循以下机制:
- 显存分配器:PyTorch使用自定义的CUDA内存分配器来管理显存
- 缓存机制:为提高性能,PyTorch会缓存已分配的显存块
- 异步执行:CUDA操作默认是异步的,可能导致资源释放延迟
问题根源分析
通过实验验证,我们确认问题主要源于以下几个方面:
- 中间张量未释放:推理过程中产生的中间计算结果未被及时清理
- PyTorch显存缓存:PyTorch默认会保留已分配的显存以备重用
- 异步上下文影响:FastAPI的异步执行环境可能干扰正常的显存回收
解决方案
经过多次测试,我们总结出以下有效的解决方案:
- 强制清空显存缓存:
torch.cuda.empty_cache()
- 禁用梯度计算(适用于纯推理场景):
torch.set_grad_enabled(False)
- 手动触发垃圾回收:
import gc
gc.collect()
最佳实践建议
基于实际项目经验,我们推荐以下开发实践:
- 显存监控:实现显存使用监控机制,及时发现异常
- 定期清理:在高频调用场景下,定期执行显存清理
- 批处理优化:尽可能使用批处理而非单次推理
- 资源隔离:考虑使用单独的进程处理推理任务
实现示例
以下是经过优化的Flask实现示例:
import gc
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from flask import Flask, request
app = Flask(__name__)
# 初始化模型
model_name = "meta-llama/Llama-3.2-1B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.float16
)
# 禁用梯度计算
torch.set_grad_enabled(False)
@app.route("/infer", methods=['POST'])
def inference_endpoint():
data = request.get_json()
# 准备输入
messages = [
{"role": "system", "content": "..."},
{"role": "user", "content": data['text']}
]
formatted_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# 执行推理
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
output = model.generate(**inputs, max_new_tokens=150)
new_tokens = output[0][inputs['input_ids'].shape[-1]:]
response = tokenizer.decode(new_tokens, skip_special_tokens=True)
# 显存清理
del inputs, output, new_tokens
gc.collect()
torch.cuda.empty_cache()
return {'result': response}
总结
在基于Transformers库开发LLM推理服务时,显存管理是需要特别关注的重点问题。通过理解PyTorch的显存管理机制,并采用适当的清理策略,可以有效避免显存泄漏问题,保证服务的稳定运行。特别是在生产环境中,建议结合服务监控和自动恢复机制,构建更加健壮的推理服务。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
py2exe:Python 3 的独立可执行文件生成工具【亲测免费】 mingw-w64-x86-64-V8.1.0-win32-seh离线安装包
【亲测免费】 华炎魔方低代码平台 - Steedos Platform 开源项目快速入门指南【亲测免费】 鼠标键盘录制和自动化操作工具【亲测免费】 ViennaRNA 开源项目指南 Python+OpenCV实现车牌检测与识别【亲测免费】 Holistically-Nested Edge Detection (HED) 项目使用教程【免费下载】 博途辅助工具:利用Openness API自动生成程序 计算机组成原理:自己动手画CPU 实训代码【亲测免费】 笔记本自带键盘一键禁用启用
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882