Transformers项目中FastAPI与LLM推理的VRAM内存泄漏问题分析
2025-04-26 23:21:01作者:冯梦姬Eddie
在基于Transformers库开发LLM推理服务时,许多开发者会遇到一个常见但棘手的问题——随着API调用次数的增加,GPU显存(VRAM)使用量不断攀升且无法自动释放,最终导致内存溢出(OOM)错误。本文将以一个典型场景为例,深入分析该问题的成因及解决方案。
问题现象
开发者在使用FastAPI框架部署Llama-3.2-1B-Instruct模型时,观察到以下现象:
- 初始显存占用约为3GB(包含系统其他进程)
- 每次调用推理API后,显存占用逐步增加
- 峰值显存达到22GB左右(显卡总容量24GB)
- 最终出现OOM错误,服务崩溃
- 即使停止调用API,显存也不会自动释放
技术背景
这种现象属于典型的GPU显存泄漏问题。在PyTorch框架下,GPU显存管理遵循以下机制:
- 显存分配器:PyTorch使用自定义的CUDA内存分配器来管理显存
- 缓存机制:为提高性能,PyTorch会缓存已分配的显存块
- 异步执行:CUDA操作默认是异步的,可能导致资源释放延迟
问题根源分析
通过实验验证,我们确认问题主要源于以下几个方面:
- 中间张量未释放:推理过程中产生的中间计算结果未被及时清理
- PyTorch显存缓存:PyTorch默认会保留已分配的显存以备重用
- 异步上下文影响:FastAPI的异步执行环境可能干扰正常的显存回收
解决方案
经过多次测试,我们总结出以下有效的解决方案:
- 强制清空显存缓存:
torch.cuda.empty_cache()
- 禁用梯度计算(适用于纯推理场景):
torch.set_grad_enabled(False)
- 手动触发垃圾回收:
import gc
gc.collect()
最佳实践建议
基于实际项目经验,我们推荐以下开发实践:
- 显存监控:实现显存使用监控机制,及时发现异常
- 定期清理:在高频调用场景下,定期执行显存清理
- 批处理优化:尽可能使用批处理而非单次推理
- 资源隔离:考虑使用单独的进程处理推理任务
实现示例
以下是经过优化的Flask实现示例:
import gc
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from flask import Flask, request
app = Flask(__name__)
# 初始化模型
model_name = "meta-llama/Llama-3.2-1B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.float16
)
# 禁用梯度计算
torch.set_grad_enabled(False)
@app.route("/infer", methods=['POST'])
def inference_endpoint():
data = request.get_json()
# 准备输入
messages = [
{"role": "system", "content": "..."},
{"role": "user", "content": data['text']}
]
formatted_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# 执行推理
inputs = tokenizer(formatted_prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
output = model.generate(**inputs, max_new_tokens=150)
new_tokens = output[0][inputs['input_ids'].shape[-1]:]
response = tokenizer.decode(new_tokens, skip_special_tokens=True)
# 显存清理
del inputs, output, new_tokens
gc.collect()
torch.cuda.empty_cache()
return {'result': response}
总结
在基于Transformers库开发LLM推理服务时,显存管理是需要特别关注的重点问题。通过理解PyTorch的显存管理机制,并采用适当的清理策略,可以有效避免显存泄漏问题,保证服务的稳定运行。特别是在生产环境中,建议结合服务监控和自动恢复机制,构建更加健壮的推理服务。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355