ns-3 开源网络模拟器教程
项目介绍
ns-3 是一个免费的开源项目,致力于构建用于仿真研究和教育的离散事件网络模拟器。本项目是协作性的,目标是通过开放合作过程,鼓励社区贡献缺失的模型组件。软件遵循 GNU General Public License v2.0(GPL-2.0-only),允许在特定许可条款下自由使用、修改和分享。更多关于 ns-3 的详细信息可访问其官方网站 https://www.nsnam.org。
项目快速启动
安装准备
确保你的系统已安装Git和Python(如果计划使用Python接口)。ns-3的开发版本可以通过以下命令克隆:
git clone https://gitlab.com/nsnam/ns-3-dev-git.git
cd ns-3-dev-git
配置ns-3以启用示例和测试功能:
./configure --enable-examples --enable-tests
然后进行编译:
./build
编译完成后,运行一个简单的示例来验证安装:
./waf run simple-global-routing
此命令将生成tr文本跟踪文件和一系列pcap二进制跟踪文件。
Python环境设置(可选)
若主要使用Python接口,建议创建虚拟环境并安装预构建的ns-3 Python绑定:
python3 -m venv ns3env
source ns3env/bin/activate
pip install ns3
之后,你可以尝试Python脚本来运行ns-3模拟。
应用案例和最佳实践
在Linux环境下,运行模拟非常直观。例如,simple-global-routing例子展示了如何配置全局路由。对于更复杂的场景,阅读官方文档中的教程和示例程序至关重要。利用doxygen生成的API文档理解C++接口,并查看Python等语言对应的模拟脚本以学习不同语言下的最佳实践。
典型生态项目
ns-3有一个活跃的社区,围绕它发展了一系列工具和模型扩展,这些可以在ns-3模型库以及通过参与者的个人或组织仓库找到。开发者通常会在自己的项目中集成ns-3,比如用于网络协议的研发、性能评估或者在特定应用场景(如IoT、5G仿真)中的定制化需求实现。此外,学术界广泛利用ns-3进行网络技术的研究论文支持。
为了深化理解和应用,推荐加入ns-3的邮件列表和论坛,参与讨论最新的模型开发、优化技巧以及遇到的问题解决方案。官方文档和GitLab仓库是获取最新生态动态的关键资源点。
以上步骤提供了一个快速入门ns-3的概览。深入学习则需参考其详细的官方文档和参与社区活动,以全面掌握这一强大的网络仿真平台。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00