VLMEvalKit项目中Janus-Pro模型在ChartQA评测中的标点处理问题分析
2025-07-02 00:39:01作者:平淮齐Percy
在视觉语言模型评估领域,评测指标的标准化处理对结果准确性至关重要。近期在VLMEvalKit项目中发现,Janus-Pro系列模型在ChartQA测试集上存在输出结果标点符号影响评测准确性的现象,这一发现对视觉问答任务的评测具有普遍参考价值。
现象描述 当使用Janus-Pro-7B模型在ChartQA_TEST数据集上进行测试时,模型输出的所有答案都带有尾随标点(如"Yes."、"1995.")。原始评测结果显示augmented测试集准确率仅为30.56%,human测试集20.80%。经人工检查发现,这些标点符号导致模型输出与标准答案无法匹配。
问题诊断 深入分析表明,ChartQA默认采用relaxed_accuracy评估指标,该指标基于规则匹配,对字符串的精确度要求较高。当去除输出中的尾随标点后,模型性能出现显著提升:
- augmented测试集准确率从30.56%提升至75.04%
- human测试集准确率从20.80%提升至43.44%
- 整体准确率提升超过33个百分点
技术背景 视觉问答任务中,模型输出后处理是确保评测公平性的关键环节。ChartQA采用的relaxed_accuracy指标设计初衷是容忍数字格式、单位等差异,但对标点符号的敏感性未被充分考虑。Janus-Pro模型作为多模态大模型,其文本生成模块可能存在默认添加标点的倾向。
解决方案建议 针对此类问题,技术团队提出两个层面的改进方向:
-
模型层面优化
- 修改generative_inner函数,针对不同评测任务调整输出格式
- 增加后处理模块,自动去除特定任务不需要的标点符号
- 训练时引入任务相关的输出格式约束
-
评测体系优化
- 在评估脚本中增加标点标准化预处理
- 扩展relaxed_accuracy的容错规则,将常见标点差异纳入考虑
- 建立更鲁棒的字符串匹配机制
行业启示 该案例揭示了多模态模型评测中容易被忽视的细节问题。在实际应用中,建议开发者:
- 对新模型进行输出格式分析
- 建立标准化的预处理流程
- 针对不同任务设计差异化的后处理方案
- 在模型卡中明确说明输出格式特征
后续展望 随着多模态模型复杂度提升,输出标准化问题将更加突出。建议社区共同建立统一的输出规范和后处理标准,同时保持评测体系的灵活性,以准确反映模型真实能力。此次发现的问题也为其他视觉问答任务的评测提供了重要参考。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136