VLMEvalKit项目中Janus-Pro模型在ChartQA评测中的标点处理问题分析
2025-07-02 17:34:12作者:平淮齐Percy
在视觉语言模型评估领域,评测指标的标准化处理对结果准确性至关重要。近期在VLMEvalKit项目中发现,Janus-Pro系列模型在ChartQA测试集上存在输出结果标点符号影响评测准确性的现象,这一发现对视觉问答任务的评测具有普遍参考价值。
现象描述 当使用Janus-Pro-7B模型在ChartQA_TEST数据集上进行测试时,模型输出的所有答案都带有尾随标点(如"Yes."、"1995.")。原始评测结果显示augmented测试集准确率仅为30.56%,human测试集20.80%。经人工检查发现,这些标点符号导致模型输出与标准答案无法匹配。
问题诊断 深入分析表明,ChartQA默认采用relaxed_accuracy评估指标,该指标基于规则匹配,对字符串的精确度要求较高。当去除输出中的尾随标点后,模型性能出现显著提升:
- augmented测试集准确率从30.56%提升至75.04%
- human测试集准确率从20.80%提升至43.44%
- 整体准确率提升超过33个百分点
技术背景 视觉问答任务中,模型输出后处理是确保评测公平性的关键环节。ChartQA采用的relaxed_accuracy指标设计初衷是容忍数字格式、单位等差异,但对标点符号的敏感性未被充分考虑。Janus-Pro模型作为多模态大模型,其文本生成模块可能存在默认添加标点的倾向。
解决方案建议 针对此类问题,技术团队提出两个层面的改进方向:
-
模型层面优化
- 修改generative_inner函数,针对不同评测任务调整输出格式
- 增加后处理模块,自动去除特定任务不需要的标点符号
- 训练时引入任务相关的输出格式约束
-
评测体系优化
- 在评估脚本中增加标点标准化预处理
- 扩展relaxed_accuracy的容错规则,将常见标点差异纳入考虑
- 建立更鲁棒的字符串匹配机制
行业启示 该案例揭示了多模态模型评测中容易被忽视的细节问题。在实际应用中,建议开发者:
- 对新模型进行输出格式分析
- 建立标准化的预处理流程
- 针对不同任务设计差异化的后处理方案
- 在模型卡中明确说明输出格式特征
后续展望 随着多模态模型复杂度提升,输出标准化问题将更加突出。建议社区共同建立统一的输出规范和后处理标准,同时保持评测体系的灵活性,以准确反映模型真实能力。此次发现的问题也为其他视觉问答任务的评测提供了重要参考。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1