dstack项目0.19.10版本发布:任务优先级与Azure Fsv2系列支持
dstack作为一个开源的机器学习工作流编排平台,致力于简化AI/ML项目的开发、测试和部署流程。通过提供统一的接口来管理计算资源和工作流,dstack让研究人员和工程师能够更专注于模型开发本身,而无需花费大量时间在基础设施配置上。
任务优先级管理
本次0.19.10版本引入了一个重要的新特性——任务优先级管理。在之前的版本中,所有任务都是按照先进先出(FIFO)的原则进行调度,这在某些场景下可能不够灵活。新版本允许用户为每个运行配置指定一个0到100之间的优先级数值,数值越高表示优先级越高。
优先级机制的工作方式是:系统首先按照优先级降序排列任务,然后在同一优先级组内保持FIFO顺序。值得注意的是,高优先级任务如果因资源限制无法调度,不会阻塞低优先级任务的执行,这保证了系统资源的高效利用。
在实际应用中,可以将关键实验或生产任务设置为高优先级(如80-100),而将非紧急的测试或探索性任务设置为中等或低优先级(如20-50)。同时,结合重试策略(retry),可以确保重要任务在遇到容量限制时能够保持排队状态,直到资源可用。
CLI工具改进
命令行界面(CLI)也迎来了重要更新。新版本用更直观的dstack project命令取代了原有的dstack config命令,提供了更清晰的项目管理体验:
dstack project list可以列出所有配置的项目及其详细信息dstack project set-default可以设置默认项目dstack project add用于添加新项目配置
此外,dstack ps命令新增了-n/--last参数,方便用户快速查看最近的N个运行记录,这在日常监控和调试中非常实用。
Azure Fsv2系列支持
对于使用Azure作为后端的用户,本次更新增加了对Fsv2系列计算优化型虚拟机的支持。Fsv2系列基于Intel Xeon Platinum 8168处理器,提供出色的计算性能与性价比平衡,特别适合计算密集型工作负载。
在资源选择时,系统会自动将Fsv2系列纳入考虑范围,用户可以通过dstack apply命令查看不同配置的价格和性能信息,选择最适合自己需求的实例类型。
其他重要改进
- 多节点任务支持:修复了在空闲实例上无法运行多节点任务的bug,提升了资源利用率
- 本地代码上传限制:使本地代码上传的大小限制可配置,适应不同项目需求
- Docker镜像优化:默认Docker镜像中移除了conda,改用更轻量级的uv工具
- 主题持久化:UI界面的深色/浅色主题选择现在会持久化保存
- 自动缩放保护:增加了对缩放目标值的校验,防止意外配置错误
总结
dstack 0.19.10版本通过引入任务优先级、改进CLI体验和扩展Azure支持,进一步提升了平台的灵活性和用户体验。这些改进使得资源调度更加智能,管理更加便捷,同时也为不同预算和性能需求的用户提供了更多选择。对于机器学习团队来说,这些增强功能将有助于更高效地管理和执行复杂的计算工作流。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C038
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0117
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00