Pixie项目在Amazon Linux 2023上的Go TLS追踪问题分析与解决
在云原生可观测性工具Pixie的使用过程中,我们发现了一个特定于Amazon Linux 2023操作系统的Go语言TLS追踪功能失效问题。本文将深入分析问题的根源、诊断过程以及最终解决方案。
问题现象
当在Amazon Linux 2023(AL2023)节点上运行Go应用程序(1.21或1.22版本)时,Pixie无法捕获应用程序发起的HTTPS(HTTP 1.1)出站流量。而在Amazon Linux 2(AL2)节点上,相同的应用程序和配置下,TLS追踪功能则完全正常。
环境背景
- Pixie版本:0.14.10-0.14.11
- Kubernetes集群:EKS 1.30
- 内核版本:6.1.97-104.177.amzn2023.x86_64
- Go版本:1.21-1.22
问题诊断过程
通过深入分析Pixie的BPF(Berkeley Packet Filter)程序,特别是get_goid函数的执行情况,我们发现了问题的关键所在。该函数负责获取Go例程的ID(goroutine ID),是TLS追踪的关键环节。
在AL2023环境下,BPF程序输出的调试信息显示:
fs_base=0000000000000000 get_goid: g_addr=0000000000000000, goid=0
这表明获取fs_base(段寄存器基址)的过程失败了,导致后续无法正确获取goroutine ID。
根本原因
问题根源在于AL2023内核与Pixie预打包的内核头文件存在兼容性问题。具体表现为:
- AL2023内核包含了许多backport和定制修改,与标准Linux内核存在差异
- Pixie在主机上找不到内核头文件时会使用预打包的头文件
- 这些预打包头文件与AL2023内核不兼容,导致
task_struct结构体访问出错 - 最终结果是无法正确获取fs_base,使Go TLS追踪功能失效
解决方案
安装AL2023的kernel-devel包可以完美解决此问题:
yum install kernel-devel.x86_64
安装后,Pixie将使用主机上的实际内核头文件而非预打包版本,确保BPF程序能够正确访问内核数据结构。
经验总结
-
内核头文件的重要性:Pixie等基于eBPF的工具高度依赖内核头文件的准确性,不同发行版的内核定制可能导致兼容性问题
-
环境诊断工具:Pixie团队正在开发新的诊断工具,未来将能自动检测内核头文件问题,帮助用户更快定位类似问题
-
发行版兼容性:在云环境中使用eBPF工具时,需要特别注意不同Linux发行版和版本间的内核差异
后续改进
虽然当前问题可通过安装内核头文件解决,但从长远看,Pixie项目可以考虑:
- 增加对更多Linux发行版的预打包头文件支持
- 完善安装时的环境检查机制
- 提供更清晰的内核兼容性文档
这个问题也提醒我们,在使用eBPF技术时,内核环境的差异是需要特别关注的因素。随着Pixie诊断工具的完善,未来类似问题的诊断和解决将会更加高效。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00