Xinference 项目中如何正确指定模型运行设备
2025-05-29 23:54:24作者:殷蕙予
在Xinference项目中,用户经常需要处理GPU资源不足的情况,特别是当同时运行多个模型时。本文将深入探讨如何在Xinference中正确指定模型运行设备,包括embedding和rerank模型的CPU运行配置。
设备指定问题背景
当GPU内存被其他进程(如vLLM)占用时,用户需要将Xinference模型运行在CPU上。对于embedding模型,直接使用--device cpu参数可以正常工作:
xinference launch --model-name bge-m3 --model-type embedding --model-path /path/to/model --device cpu
然而,同样的方法在rerank模型上却会导致错误,提示got multiple values for keyword argument 'device'。
正确的设备指定方法
经过项目维护者的确认,Xinference提供了统一的设备指定参数--n-gpu None,这个参数适用于所有模型类型,包括embedding和rerank:
# 对于rerank模型
xinference launch --model-name bge-reranker-v2-m3 --model-type rerank --model-path /path/to/model --n-gpu None
# 对于embedding模型同样适用
xinference launch --model-name bge-m3 --model-type embedding --model-path /path/to/model --n-gpu None
这个参数明确告诉Xinference不要使用GPU,而是使用CPU进行计算。
安装优化建议
如果用户只需要使用embedding和rerank功能,可以优化安装过程,只安装必要的依赖:
pip install "xinference[embedding,rerank]"
这样可以减少不必要的依赖安装,节省存储空间和安装时间。
生产环境部署建议
对于需要长期运行的Xinference服务,建议采用以下方式之一:
- 使用nohup命令保持进程运行
- 配置为系统服务(service)
项目团队表示未来会考虑直接支持service方式的部署,这将进一步简化生产环境的管理。
总结
在Xinference项目中管理模型运行设备时,--n-gpu None是统一且推荐的参数,适用于所有模型类型。这种方法比特定模型的--device参数更加一致和可靠。同时,根据实际需求选择性地安装组件可以优化环境配置。随着项目的发展,部署方式也将更加简化,为用户提供更好的使用体验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248