Xinference 项目中如何正确指定模型运行设备
2025-05-29 09:41:16作者:殷蕙予
在Xinference项目中,用户经常需要处理GPU资源不足的情况,特别是当同时运行多个模型时。本文将深入探讨如何在Xinference中正确指定模型运行设备,包括embedding和rerank模型的CPU运行配置。
设备指定问题背景
当GPU内存被其他进程(如vLLM)占用时,用户需要将Xinference模型运行在CPU上。对于embedding模型,直接使用--device cpu参数可以正常工作:
xinference launch --model-name bge-m3 --model-type embedding --model-path /path/to/model --device cpu
然而,同样的方法在rerank模型上却会导致错误,提示got multiple values for keyword argument 'device'。
正确的设备指定方法
经过项目维护者的确认,Xinference提供了统一的设备指定参数--n-gpu None,这个参数适用于所有模型类型,包括embedding和rerank:
# 对于rerank模型
xinference launch --model-name bge-reranker-v2-m3 --model-type rerank --model-path /path/to/model --n-gpu None
# 对于embedding模型同样适用
xinference launch --model-name bge-m3 --model-type embedding --model-path /path/to/model --n-gpu None
这个参数明确告诉Xinference不要使用GPU,而是使用CPU进行计算。
安装优化建议
如果用户只需要使用embedding和rerank功能,可以优化安装过程,只安装必要的依赖:
pip install "xinference[embedding,rerank]"
这样可以减少不必要的依赖安装,节省存储空间和安装时间。
生产环境部署建议
对于需要长期运行的Xinference服务,建议采用以下方式之一:
- 使用nohup命令保持进程运行
- 配置为系统服务(service)
项目团队表示未来会考虑直接支持service方式的部署,这将进一步简化生产环境的管理。
总结
在Xinference项目中管理模型运行设备时,--n-gpu None是统一且推荐的参数,适用于所有模型类型。这种方法比特定模型的--device参数更加一致和可靠。同时,根据实际需求选择性地安装组件可以优化环境配置。随着项目的发展,部署方式也将更加简化,为用户提供更好的使用体验。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C097
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
探索未来显示技术:Adafruit_SH1106 图形库 推荐使用 taggingJS:一款轻量级的前端标签插件!【亲测免费】 探索像素级完美的结构化运动:PixSFM 推荐开源项目:DropPoint - 让拖放操作更简单【亲测免费】 推荐开源项目:picocom——小巧而强大的串口通信工具 推荐使用:NATS .NET 客户端【亲测免费】 推荐开源项目:MiracleCast - 智能无线显示实现 探索安全新维度:backdoor-apk 动态后门注入工具 探秘Viasfora:Visual Studio 2022的文本编辑增强利器 推荐使用:go-reuseport - 实现高效端口复用的Go语言库
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.55 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
232
97
暂无简介
Dart
728
175
React Native鸿蒙化仓库
JavaScript
287
340
Ascend Extension for PyTorch
Python
287
320
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
445
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19