wmt16-scripts 项目使用教程
2024-09-17 15:07:49作者:瞿蔚英Wynne
1. 项目介绍
wmt16-scripts 是一个开源项目,旨在为2016年WMT(Workshop on Statistical Machine Translation)的神经机器翻译系统提供脚本和配置文件。该项目由Rico Sennrich和Barry Haddow开发,主要用于支持爱丁堡大学的神经机器翻译系统(UEDIN-NMT)。
该项目的主要功能包括:
- 提供预处理、训练和解码的脚本。
- 支持使用BPE(Byte Pair Encoding)进行子词分割,以实现开放词汇翻译。
- 包含用于处理语言学特征的脚本,以提高翻译质量。
2. 项目快速启动
2.1 环境准备
在开始之前,确保你已经安装了以下工具和库:
- Python 3.x
- Nematus(https://github.com/rsennrich/nematus)
- Moses tokenizer(https://github.com/moses-smt/mosesdecoder)
2.2 克隆项目
首先,克隆 wmt16-scripts 项目到本地:
git clone https://github.com/rsennrich/wmt16-scripts.git
cd wmt16-scripts
2.3 数据预处理
假设你已经有了源文本数据(以CONLL格式)和目标文本数据,可以使用以下脚本进行预处理:
./preprocess.sh
2.4 模型训练
使用以下脚本开始训练模型:
./train.sh
2.5 模型翻译
训练完成后,可以使用以下脚本对预处理后的文本进行翻译:
./translate.sh
2.6 后处理
翻译完成后,可以使用以下脚本进行后处理,包括合并BPE段、去真词化和去分词:
./postprocess-test.sh < data/newstest2013 > data/newstest2013.postprocessed
3. 应用案例和最佳实践
3.1 应用案例
wmt16-scripts 项目在多个翻译任务中得到了应用,特别是在WMT 2016的共享翻译任务中。该项目帮助研究人员和开发者快速搭建和训练神经机器翻译模型,并在多个语言对上取得了优异的成绩。
3.2 最佳实践
- 数据预处理:确保源文本和目标文本的格式正确,使用Moses tokenizer进行分词和去真词化。
- 模型训练:在训练过程中,定期保存模型,以便在需要时可以中断训练并恢复。
- 后处理:翻译完成后,进行必要的后处理步骤,以确保输出的翻译结果质量更高。
4. 典型生态项目
wmt16-scripts 项目依赖于多个开源工具和库,以下是一些典型的生态项目:
- Nematus:一个基于Theano的神经机器翻译工具包,支持多种模型架构。
- Moses:一个广泛使用的统计机器翻译工具包,包含多种预处理和后处理工具。
- subword-nmt:一个用于实现BPE子词分割的开源工具。
这些项目与 wmt16-scripts 紧密结合,共同构成了一个完整的神经机器翻译生态系统。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869