Gorilla项目中的函数调用参数类型转换问题解析
在开源项目Gorilla的Berkeley Function Call Leaderboard(BFCL)评估框架中,开发团队发现了一些关于函数调用参数类型转换的有趣现象。这些问题主要涉及两种场景:温度单位参数的默认值处理和REST API认证参数的类型转换。
温度单位参数的默认值处理
在BFCL评估集的live_parallel部分,前八个样本都是关于get_current_weather函数的使用问题。该函数定义中,unit参数是一个可选参数,其枚举值包括"celsius"和"fahrenheit",默认值为"fahrenheit"。
值得注意的是,虽然函数定义允许两种温度单位,但在实际评估中,只有当模型输出使用华氏度(fahrenheit)时才被认为是正确答案。这是因为当用户提示中没有明确指定温度单位时,模型应该遵循函数定义中的默认值设置。这一发现对评估某些模型的性能产生了影响,特别是那些倾向于使用摄氏度输出的模型。
REST API认证参数的类型转换
另一个重要发现是关于REST API调用中的认证参数处理。在某些情况下,函数文档中定义的auth参数类型为元组(tuple),但由于JSON Schema不支持元组类型,这些参数在实际传输过程中被转换为列表(list)类型。
有趣的是,requests.get函数实际上能够正确处理这两种类型的认证参数——无论是传入空元组()还是空列表[],API调用都能成功执行。这表明在当前的评估框架下,这种类型转换不会影响最终的评分结果。
技术实现细节
深入分析Gorilla项目的代码实现,可以发现类型转换主要发生在模型输出处理阶段。项目中的模型处理器会将所有元组类型转换为列表类型,以兼容OpenAI API的格式要求。这种转换在大多数情况下不会影响功能执行,因为Python的函数调用通常能够处理这两种序列类型。
对于REST API评估,认证信息主要通过请求头(headers)传递,而不是依赖auth参数。函数文档中明确提供了X-RapidAPI-Key和X-RapidAPI-Host等头部字段的定义,这为模型提供了正确的认证方式指引。
评估框架的健壮性考量
这些发现揭示了评估框架设计中的一些重要考量点:
- 默认参数值的处理需要严格遵循函数定义
- 类型系统的限制可能导致意料之外的类型转换
- API调用的兼容性测试是评估框架验证的重要环节
评估框架的设计者需要在保持严格标准的同时,也要考虑实际执行环境的灵活性。在Gorilla项目的实现中,通过将元组转换为列表解决了JSON Schema的类型限制问题,同时保持了功能的正常执行。
结论
Gorilla项目的BFCL评估框架在处理函数调用参数时展现出了良好的设计思路和实现细节。通过分析温度单位参数和认证参数的处理方式,我们可以更好地理解大规模函数调用评估中的技术挑战和解决方案。这些经验对于构建类似的评估系统具有重要的参考价值,特别是在处理类型系统和API兼容性方面。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00