Scrapegraph-ai项目中实现LLM与嵌入模型解耦的技术方案
2025-05-11 05:24:32作者:鲍丁臣Ursa
在Scrapegraph-ai项目中,开发者们提出了一个重要的架构改进需求:如何实现大型语言模型(LLM)与嵌入模型(Embedding Model)的解耦使用。这一技术改进使得用户能够灵活组合不同的模型服务,例如使用OpenAI的嵌入服务配合Groq的LLM服务。
技术背景
在自然语言处理(NLP)系统中,嵌入模型和LLM通常协同工作。嵌入模型负责将文本转换为向量表示,而LLM则处理更复杂的语言理解和生成任务。传统实现中,这两个组件往往来自同一服务提供商,限制了技术选型的灵活性。
现有架构分析
Scrapegraph-ai项目原有的设计将LLM和嵌入模型的初始化耦合在一起,通过单一的_create_llm()方法同时创建两个组件。这种设计存在以下限制:
- 用户无法自由组合不同供应商的模型服务
- 本地部署模型与云端服务难以混合使用
- 配置选项缺乏灵活性
改进方案
技术社区提出了将嵌入模型初始化逻辑独立出来的解决方案:
- 新增
_create_embedder()方法专门处理嵌入模型初始化 - 分离两者的配置选项
- 保持向后兼容性
实现细节
改进后的架构允许以下使用场景:
- 使用OpenAI的text-embedding-ada-002作为嵌入模型
- 同时使用Groq提供的Llama 2或Mixtral作为LLM
- 混合本地Ollama模型与云端嵌入服务
技术优势
这一改进带来了显著的技术优势:
- 成本优化:用户可以选择性价比更高的组合方案
- 性能提升:针对不同任务选择最优的模型组合
- 灵活性增强:不受单一供应商限制
- 可扩展性:更容易集成新的模型服务
应用场景
这种解耦架构特别适合以下应用场景:
- 需要高质量嵌入但预算有限的LLM应用
- 对响应速度要求高的实时应用
- 需要特定领域专业模型组合的场景
- 注重数据隐私的混合部署方案
总结
Scrapegraph-ai项目的这一架构改进体现了现代AI应用开发的重要趋势:通过组件解耦实现技术选型的最大灵活性。这种设计不仅提升了系统的实用性,也为未来的功能扩展奠定了良好基础。开发者可以根据实际需求,自由组合不同供应商、不同部署方式的各种模型服务,打造最优的AI应用解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111