Brax项目中状态动力学雅可比矩阵的计算与应用
2025-06-29 00:18:18作者:庞眉杨Will
概述
在基于物理的强化学习框架Brax中,计算状态转移函数的雅可比矩阵对于实现最优控制算法至关重要。本文将详细介绍如何在Brax环境中获取状态动力学相对于状态和动作的雅可比矩阵,并解决在实际计算过程中可能遇到的问题。
雅可比矩阵的重要性
在控制理论中,状态转移函数的雅可比矩阵相当于线性系统中的状态矩阵A和控制矩阵B。对于非线性系统:
x_next = f(x,u)
雅可比矩阵∂f/∂x和∂f/∂u提供了系统在特定工作点附近的线性近似,这对于许多控制算法如LQR、iLQR等至关重要。
Brax中的实现方法
在Brax中,可以通过JAX的自动微分功能来计算这些雅可比矩阵。基本方法如下:
- 定义简化状态转移函数:
def trimmed_state_step(state, action):
new_state = env.step(state, action)
return new_state.obs
- 计算相对于动作的雅可比矩阵:
jax.jacobian(trimmed_state_step, argnums=1)(state, act)
常见问题与解决方案
相对于状态的雅可比矩阵为零的问题
在positional或spring管道中,直接计算相对于状态的雅可比矩阵可能会得到全零结果。这是因为:
- 只有generalized管道完全支持状态微分
- 观测值(obs)字段不会自动传播梯度信息
解决方案
- 使用generalized管道进行计算
- 从pipeline_state字段手动提取梯度信息
- 实现自定义的观测值梯度计算函数
示例解决方案:
def example_get_obs_grad(pipeline_grad):
return jp.concatenate([pipeline_grad.q[:,2:], pipeline_grad.qd], axis=-1)
pipeline_grad = jax.jacobian(trimmed_state_step, argnums=0)(state, act).pipeline_state
dobs_dstate = example_get_obs_grad(pipeline_grad)
实际应用建议
- 对于需要精确动力学模型的控制算法,优先使用generalized管道
- 注意观测空间的定义,确保梯度计算与实际的观测函数一致
- 考虑性能影响,雅可比矩阵计算会增加计算开销
总结
在Brax框架中获取状态动力学的雅可比矩阵需要特别注意管道类型的选择和梯度传播的处理。通过合理的方法,可以成功获取这些关键的控制理论参数,为基于模型的控制算法在Brax中的实现奠定基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134