首页
/ 探秘从零构建多层神经网络:动手实现强大机器学习模型

探秘从零构建多层神经网络:动手实现强大机器学习模型

2024-05-21 15:44:31作者:戚魁泉Nursing

在这个开源项目中,我们将一起深入了解并亲手构建一个多元层神经网络。项目灵感来源于http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch,它将引导我们了解神经网络的核心概念,以及如何在Python环境中运用这些知识。

项目介绍

项目的目标是实现一个可定制层数和每层维度的多层神经网络。例如,配置[2, 3, 2]表示输入为2维,隐藏层为3维,输出层为2维(用于二分类问题)的情况。通过使用softmax作为输出函数来确保概率的归一化。

项目不仅包括神经网络的实现,还提供了一个数据集生成器,如make_moons,方便我们创建非线性可分离的数据集进行实验。

项目技术分析

  • 数据生成与可视化:利用scikit-learn库生成非线性可分离数据,并以散点图形式展示,直观地揭示了问题的复杂性。
  • 神经网络架构:项目遵循典型的神经网络结构,包括激活函数(如tanh)、前向传播计算等基本概念。输出层采用softmax激活,损失函数为交叉熵损失。
  • 梯度下降与反向传播:学习过程中使用最简单的批量梯度下降法,参数更新依赖于反向传播算法计算的梯度。

项目的实现主要分为以下部分:

  • gate.py: 定义乘法门和加法门操作,用于计算神经网络中的权重和偏置项。
  • layer.py: 实现Sigmoid和Tanh激活层。
  • output.py: 包含Softmax输出层,用于计算预测概率和损失函数。

项目及技术应用场景

  • 机器学习任务:尤其适合处理非线性可分的数据集,如图像识别、文本分类等。
  • 学术研究:理解神经网络工作原理,测试新算法或优化策略的好工具。
  • 教学示例:帮助初学者掌握深度学习的基本构建块。

项目特点

  1. 从零开始:完全手动实现,便于深入理解每一行代码背后的数学逻辑。
  2. 高度可扩展:设计允许调整网络结构,适应不同规模和复杂性的任务。
  3. 清晰易懂:代码结构简洁,配合详细注释,易于学习和调试。
  4. 实例驱动:利用非线性可分数据集演示训练过程,直观呈现模型学习能力。

通过这个开源项目,开发者可以不仅学习到神经网络的基础知识,还可以实战练习,提升对深度学习的理解和应用能力。现在就加入进来,亲手打造你的多层神经网络吧!

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8