Kyuubi项目中Spark历史服务器UI显示问题的分析与解决
问题背景
在Kyuubi项目的最新版本中,用户在使用Spark历史服务器查看不完整应用程序时,遇到了Kyuubi查询引擎UI的错误。具体表现为当访问历史应用的Kyuubi页面时,系统抛出"java.lang.Integer cannot be cast to java.lang.Long"的异常,导致HTTP 500错误。
错误现象
用户在使用Spark 3.3.2版本时,发现以下两种场景存在差异:
- 通过ApplicationMaster直接访问Kyuubi查询引擎页面时,功能正常
- 通过Spark历史服务器查看不完整应用程序时,访问Kyuubi查询引擎页面会报错
错误堆栈显示类型转换异常,具体是尝试将Integer类型转换为Long类型时失败。这一错误发生在Spark UI的StatementStatsPagedTable组件处理行数据时。
问题根源分析
经过技术团队分析,这个问题与Jackson库处理Scala数据类型时的行为有关。具体来说,当Jackson反序列化某些数值类型时,可能会错误地将某些本应为Long类型的字段识别为Integer类型,导致后续的类型转换失败。
这种情况在Jackson处理Scala数据类型时较为常见,特别是在处理Option类型包装的数值时。Jackson有时无法准确推断出Scala数值类型的具体大小,导致选择了较小的数值类型(如Integer)而非预期的较大类型(如Long)。
解决方案
针对这个问题,技术团队提出了两种解决方案:
-
直接修改类型转换逻辑:在相关代码处显式处理类型转换,确保数值类型的一致性。这种方法在用户环境中验证有效,但不够优雅。
-
使用Jackson注解:更优雅的解决方案是使用
@JsonDeserialize注解显式指定字段的反序列化类型。具体做法是在operationRunTime和operationCpuTime字段上添加@JsonDeserialize(contentAs = classOf[java.lang.Long])注解,强制Jackson将这些字段反序列化为Long类型。
最终采用了第二种方案,因为它:
- 更符合Jackson的最佳实践
- 在代码层面更清晰明确
- 解决了根本问题而非表面症状
- 具有更好的可维护性
技术实现细节
在具体实现中,开发团队在相关的Scala case类中添加了Jackson注解,确保以下字段始终被正确反序列化:
- 操作运行时间(operationRunTime)
- 操作CPU时间(operationCpuTime)
这些字段在Kyuubi的查询统计信息中用于记录各项操作的耗时情况,必须保证其数值范围足够大(使用Long而非Integer),以避免潜在的数值溢出问题。
验证与效果
修复后,经过验证:
- 通过Spark历史服务器查看不完整应用程序时,Kyuubi查询引擎页面可以正常显示
- 所有数值字段都被正确反序列化为Long类型
- 原有功能保持不变,不会引入新的兼容性问题
总结
这个问题展示了在Scala和Java混合环境中处理JSON序列化/反序列化时可能遇到的类型系统挑战。通过使用Jackson的注解功能,我们能够精确控制反序列化行为,确保类型安全。这也提醒开发者在处理跨语言数据交换时,需要特别注意数值类型的范围和精度问题。
对于使用Kyuubi和Spark集成的用户,建议在升级到包含此修复的版本后,验证历史服务器中Kyuubi页面的显示功能是否正常。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00