Apache SkyWalking OAP 10.0.1 内存溢出问题分析与解决方案
Apache SkyWalking 是一款优秀的应用性能监控系统,其 OAP(Observability Analysis Platform)组件负责数据处理和分析。在 10.0.1 版本中,部分用户遇到了 Java 堆内存溢出的问题,导致服务异常终止。
问题现象
用户报告在使用 SkyWalking OAP 10.0.1 版本时,无论是二进制部署还是 Docker 容器化部署,服务运行一段时间后都会出现 Java 堆内存溢出错误。错误日志中显示大量线程因 OutOfMemoryError 终止,包括数据处理线程、网络通信线程等关键组件。
典型的错误表现为:
- MetricsAggregateWorker 线程抛出 Java heap space 错误
- 网络通信层(Netty)处理异常
- 数据库连接池(HikariCP)维护线程崩溃
- gRPC 服务线程相继失败
根本原因分析
经过深入分析,这个问题的主要原因是 SkyWalking OAP 默认使用了 H2 内存数据库作为存储后端。H2 内存模式会将所有监控数据保存在 JVM 堆内存中,随着监控数据的不断积累,内存消耗会持续增长,最终导致堆内存耗尽。
在默认配置下,OAP 服务没有设置合适的数据保留策略(TTL),所有历史数据都会永久保存在内存中。对于生产环境或监控数据量较大的场景,这种配置显然是不合适的。
解决方案
方案一:更换持久化存储
推荐将存储后端改为支持持久化的数据库,如:
- Elasticsearch
- MySQL
- PostgreSQL
- TiDB
这些数据库可以有效地将数据存储在磁盘上,避免内存过度消耗。以 Elasticsearch 为例,配置方式如下:
storage:
selector: ${SW_STORAGE:elasticsearch}
elasticsearch:
nameSpace: ${SW_NAMESPACE:""}
clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:localhost:9200}
protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"}
方案二:调整 JVM 内存参数
如果暂时无法更换存储后端,可以尝试增大 JVM 堆内存:
docker run -d --name=skywalking-oap \
-e SW_OAP_JAVA_OPTS='-Xms8g -Xmx8g' \
apache/skywalking-oap-server:10.0.1
但需要注意,这只是临时解决方案,随着数据增长仍可能遇到内存问题。
方案三:配置数据保留策略
通过设置数据保留时间(TTL),自动清理过期数据:
core:
dataTTL: ${SW_CORE_DATA_TTL:3} # 数据保留3天
最佳实践建议
- 生产环境务必使用持久化存储后端
- 根据监控数据量合理配置 JVM 内存参数
- 设置合理的数据保留策略
- 定期监控 OAP 服务的内存使用情况
- 对于大规模部署,考虑使用集群模式分散负载
总结
SkyWalking OAP 默认使用 H2 内存数据库是为了简化开发和测试环境部署,但在生产环境中需要特别注意存储后端的配置。通过选择合适的持久化存储方案和合理的数据保留策略,可以有效避免内存溢出问题,确保监控系统的稳定运行。
对于资源有限的环境,可以考虑定期清理历史数据或使用更轻量级的存储方案。在任何情况下,都应该根据实际监控需求和资源情况来调整配置,而不是直接使用默认设置。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00