Apache SkyWalking OAP 10.0.1 内存溢出问题分析与解决方案
Apache SkyWalking 是一款优秀的应用性能监控系统,其 OAP(Observability Analysis Platform)组件负责数据处理和分析。在 10.0.1 版本中,部分用户遇到了 Java 堆内存溢出的问题,导致服务异常终止。
问题现象
用户报告在使用 SkyWalking OAP 10.0.1 版本时,无论是二进制部署还是 Docker 容器化部署,服务运行一段时间后都会出现 Java 堆内存溢出错误。错误日志中显示大量线程因 OutOfMemoryError 终止,包括数据处理线程、网络通信线程等关键组件。
典型的错误表现为:
- MetricsAggregateWorker 线程抛出 Java heap space 错误
- 网络通信层(Netty)处理异常
- 数据库连接池(HikariCP)维护线程崩溃
- gRPC 服务线程相继失败
根本原因分析
经过深入分析,这个问题的主要原因是 SkyWalking OAP 默认使用了 H2 内存数据库作为存储后端。H2 内存模式会将所有监控数据保存在 JVM 堆内存中,随着监控数据的不断积累,内存消耗会持续增长,最终导致堆内存耗尽。
在默认配置下,OAP 服务没有设置合适的数据保留策略(TTL),所有历史数据都会永久保存在内存中。对于生产环境或监控数据量较大的场景,这种配置显然是不合适的。
解决方案
方案一:更换持久化存储
推荐将存储后端改为支持持久化的数据库,如:
- Elasticsearch
- MySQL
- PostgreSQL
- TiDB
这些数据库可以有效地将数据存储在磁盘上,避免内存过度消耗。以 Elasticsearch 为例,配置方式如下:
storage:
selector: ${SW_STORAGE:elasticsearch}
elasticsearch:
nameSpace: ${SW_NAMESPACE:""}
clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:localhost:9200}
protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"}
方案二:调整 JVM 内存参数
如果暂时无法更换存储后端,可以尝试增大 JVM 堆内存:
docker run -d --name=skywalking-oap \
-e SW_OAP_JAVA_OPTS='-Xms8g -Xmx8g' \
apache/skywalking-oap-server:10.0.1
但需要注意,这只是临时解决方案,随着数据增长仍可能遇到内存问题。
方案三:配置数据保留策略
通过设置数据保留时间(TTL),自动清理过期数据:
core:
dataTTL: ${SW_CORE_DATA_TTL:3} # 数据保留3天
最佳实践建议
- 生产环境务必使用持久化存储后端
- 根据监控数据量合理配置 JVM 内存参数
- 设置合理的数据保留策略
- 定期监控 OAP 服务的内存使用情况
- 对于大规模部署,考虑使用集群模式分散负载
总结
SkyWalking OAP 默认使用 H2 内存数据库是为了简化开发和测试环境部署,但在生产环境中需要特别注意存储后端的配置。通过选择合适的持久化存储方案和合理的数据保留策略,可以有效避免内存溢出问题,确保监控系统的稳定运行。
对于资源有限的环境,可以考虑定期清理历史数据或使用更轻量级的存储方案。在任何情况下,都应该根据实际监控需求和资源情况来调整配置,而不是直接使用默认设置。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00