Sentence Transformers 训练过程中的参数配置问题解析
2025-05-13 13:20:06作者:盛欣凯Ernestine
问题背景
在使用 Sentence Transformers 进行模型训练时,开发者遇到了一个关于 get_input_embeddings 属性的错误。这个错误通常出现在尝试使用不支持的训练参数配置时。本文将从技术角度分析这一问题,并提供合理的参数配置建议。
错误原因分析
错误信息表明,当调用 trainer.train() 方法时,程序尝试访问 SentenceTransformer 对象不存在的 get_input_embeddings 属性。这实际上是一个深层错误,其根本原因在于:
- 参数兼容性问题:Sentence Transformers 的训练器对 Hugging Face Transformers 的某些训练参数支持有限
- 参数传递机制:部分参数会被直接传递给底层 Transformers 训练器,但 Sentence Transformers 并未完全实现所有接口
解决方案
通过对比两种参数配置方案,我们可以总结出 Sentence Transformers 训练时的最佳实践:
有效参数配置
train_args = {
"output_dir": ".",
"num_train_epochs": 1,
"per_device_train_batch_size": batch_size,
"per_device_eval_batch_size": batch_size,
"gradient_accumulation_steps": accumulation_step,
"eval_accumulation_steps": 100, # 解决评估时的内存溢出问题
"learning_rate": 3e-4,
"warmup_ratio": 0.1,
"weight_decay": 0.01,
"fp16": True,
"bf16": False,
"eval_strategy": "steps",
"eval_steps": eval_step,
"save_strategy": "steps",
"save_steps": 100,
"save_total_limit": 2,
"logging_steps": log_step,
"report_to": "tensorboard",
"load_best_model_at_end": True
}
不推荐使用的参数
以下参数在 Sentence Transformers 中可能导致问题,应避免使用:
neftune_noise_alpharemove_unused_columns- 直接设置
warmup_steps(推荐使用warmup_ratio替代)
技术建议
- 混合精度训练:可以安全使用
fp16=True来减少显存占用并加速训练 - 评估优化:
eval_accumulation_steps能有效解决评估时的内存溢出问题 - 检查点策略:使用
save_strategy和save_steps控制模型保存频率 - 学习率调度:推荐使用
warmup_ratio而非直接设置warmup_steps,这样能根据总训练步数自动计算热身步数
结论
在使用 Sentence Transformers 进行模型训练时,开发者应当注意参数配置的兼容性。遵循官方推荐的参数设置可以避免类似 get_input_embeddings 这样的底层错误。对于高级训练需求,建议先在小规模数据上测试参数配置的有效性,再扩展到全量数据训练。
通过合理的参数配置,开发者可以充分利用 Sentence Transformers 的强大功能,同时避免因参数不兼容导致的训练中断问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178