3M-ASR 项目安装与使用教程
2024-09-27 08:30:18作者:申梦珏Efrain
1. 项目的目录结构及介绍
3m-asr/
├── bin/
├── examples/
│ └── wenetspeech/
├── fastmoe/
├── tools/
├── trainer/
├── LICENSE
├── README.md
└── requirements.txt
- bin/: 存放可执行文件或脚本的目录。
- examples/wenetspeech/: 包含WenetSpeech数据集的示例代码和配置文件。
- fastmoe/: 包含FastMoE库的代码,用于支持Mixture-of-Experts (MoE)模型训练。
- tools/: 存放各种工具脚本,可能用于数据处理、模型评估等。
- trainer/: 包含训练模型的代码和配置文件。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- requirements.txt: 项目依赖的Python包列表。
2. 项目的启动文件介绍
项目的主要启动文件通常位于trainer/目录下,具体文件名可能因版本更新而有所不同。以下是一个典型的启动文件示例:
# trainer/train.py
import argparse
import os
import torch
from fastmoe import MoE
from dataset import WenetSpeechDataset
def main():
parser = argparse.ArgumentParser(description="3M-ASR Training Script")
parser.add_argument('--config', type=str, required=True, help="Path to the configuration file")
parser.add_argument('--device', type=str, default='cuda', help="Device to use for training")
args = parser.parse_args()
# Load configuration
config = load_config(args.config)
# Initialize dataset and model
dataset = WenetSpeechDataset(config['data_path'])
model = MoE(config['model_config'])
# Training loop
for epoch in range(config['epochs']):
train_epoch(model, dataset, args.device)
if __name__ == "__main__":
main()
该文件主要负责加载配置、初始化数据集和模型,并启动训练循环。
3. 项目的配置文件介绍
项目的配置文件通常是一个JSON或YAML文件,用于定义模型的超参数、数据路径、训练参数等。以下是一个典型的配置文件示例:
{
"data_path": "path/to/wenetspeech",
"model_config": {
"num_experts": 32,
"hidden_size": 512,
"num_layers": 12
},
"epochs": 50,
"batch_size": 32,
"learning_rate": 0.001
}
- data_path: 数据集的路径。
- model_config: 模型的配置参数,如专家数量、隐藏层大小、层数等。
- epochs: 训练的总轮数。
- batch_size: 每个批次的数据量。
- learning_rate: 学习率。
通过修改配置文件,用户可以调整模型的训练参数,以适应不同的需求和数据集。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120