3M-ASR 项目安装与使用教程
2024-09-27 04:35:34作者:申梦珏Efrain
1. 项目的目录结构及介绍
3m-asr/
├── bin/
├── examples/
│ └── wenetspeech/
├── fastmoe/
├── tools/
├── trainer/
├── LICENSE
├── README.md
└── requirements.txt
- bin/: 存放可执行文件或脚本的目录。
- examples/wenetspeech/: 包含WenetSpeech数据集的示例代码和配置文件。
- fastmoe/: 包含FastMoE库的代码,用于支持Mixture-of-Experts (MoE)模型训练。
- tools/: 存放各种工具脚本,可能用于数据处理、模型评估等。
- trainer/: 包含训练模型的代码和配置文件。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- requirements.txt: 项目依赖的Python包列表。
2. 项目的启动文件介绍
项目的主要启动文件通常位于trainer/
目录下,具体文件名可能因版本更新而有所不同。以下是一个典型的启动文件示例:
# trainer/train.py
import argparse
import os
import torch
from fastmoe import MoE
from dataset import WenetSpeechDataset
def main():
parser = argparse.ArgumentParser(description="3M-ASR Training Script")
parser.add_argument('--config', type=str, required=True, help="Path to the configuration file")
parser.add_argument('--device', type=str, default='cuda', help="Device to use for training")
args = parser.parse_args()
# Load configuration
config = load_config(args.config)
# Initialize dataset and model
dataset = WenetSpeechDataset(config['data_path'])
model = MoE(config['model_config'])
# Training loop
for epoch in range(config['epochs']):
train_epoch(model, dataset, args.device)
if __name__ == "__main__":
main()
该文件主要负责加载配置、初始化数据集和模型,并启动训练循环。
3. 项目的配置文件介绍
项目的配置文件通常是一个JSON或YAML文件,用于定义模型的超参数、数据路径、训练参数等。以下是一个典型的配置文件示例:
{
"data_path": "path/to/wenetspeech",
"model_config": {
"num_experts": 32,
"hidden_size": 512,
"num_layers": 12
},
"epochs": 50,
"batch_size": 32,
"learning_rate": 0.001
}
- data_path: 数据集的路径。
- model_config: 模型的配置参数,如专家数量、隐藏层大小、层数等。
- epochs: 训练的总轮数。
- batch_size: 每个批次的数据量。
- learning_rate: 学习率。
通过修改配置文件,用户可以调整模型的训练参数,以适应不同的需求和数据集。
热门项目推荐
- 鸿蒙开发工具大赶集本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。07
- LangChatLangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用Java03
- 每日精选项目🔥🔥 01.24日推荐项目:微软21节课程,入门生成式AI🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~027
- source-vue🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...Java02
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie047
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区018
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0109
热门内容推荐
最新内容推荐
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
373
72
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
276
72
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
200
47
xzs-mysql
学之思开源考试系统是一款 java + vue 的前后端分离的考试系统。主要优点是开发、部署简单快捷、界面设计友好、代码结构清晰。支持web端和微信小程序,能覆盖到pc机和手机等设备。 支持多种部署方式:集成部署、前后端分离部署、docker部署
HTML
5
1
LangChat
LangChat: Java LLMs/AI Project, Supports Multi AI Providers( Gitee AI/ 智谱清言 / 阿里通义 / 百度千帆 / DeepSeek / 抖音豆包 / 零一万物 / 讯飞星火 / OpenAI / Gemini / Ollama / Azure / Claude 等大模型), Java生态下AI大模型产品解决方案,快速构建企业级AI知识库、AI机器人应用
Java
10
3
gin-vue-admin
🚀Vite+Vue3+Gin的开发基础平台,支持TS和JS混用。它集成了JWT鉴权、权限管理、动态路由、显隐可控组件、分页封装、多点登录拦截、资源权限、上传下载、代码生成器【可AI辅助】、表单生成器和可配置的导入导出等开发必备功能。
Go
16
3
source-vue
🔥 一直想做一款追求极致用户体验的快速开发平台,看了很多优秀的开源项目但是发现没有合适的。于是利用空闲休息时间对若依框架进行扩展写了一套快速开发系统。如此有了开源字节快速开发平台。该平台基于 Spring Boot + MyBatis + Vue & Element ,包含微信小程序 & Uniapp, Web 报表、可视化大屏、三方登录、支付、短信、邮件、OSS...
Java
24
2
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
898
0
madong
基于Webman的权限管理系统
PHP
4
0
cool-admin-java
🔥 cool-admin(java版)一个很酷的后台权限管理框架,Ai编码、流程编排、模块化、插件化、CRUD极速开发,永久开源免费,基于springboot3、typescript、vue3、vite、element-ui等构建
Java
18
2