解决backtesting.py多进程优化时的RuntimeError问题
2025-06-03 01:42:46作者:侯霆垣
在使用backtesting.py进行策略参数优化时,开发者可能会遇到一个常见的多进程错误:"RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase"。这个问题源于Python多进程模块的特殊工作机制,特别是在Windows操作系统上更为常见。
问题本质
当使用backtesting.py的optimize()方法进行参数优化时,该库会默认使用多进程并行计算来提高优化效率。然而,在Windows系统上,Python的多进程实现与Unix-like系统不同,它使用spawn而非fork来创建新进程。这种差异导致在模块导入和执行顺序上需要特别注意。
错误原因
在Windows环境下,每个新启动的子进程都会重新导入主模块。如果主模块中的代码没有放在if __name__ == '__main__':保护块中,就会导致无限递归地创建新进程,最终引发RuntimeError。
解决方案
正确的做法是将执行代码包裹在if __name__ == '__main__':块中:
from backtesting import Strategy, Backtest
from backtesting.lib import crossover
from backtesting.test import SMA, GOOG
class Sma4Cross(Strategy):
# 策略实现代码...
if __name__ == '__main__':
backtest = Backtest(GOOG, Sma4Cross, commission=.002)
stats, heatmap = backtest.optimize(
n1=range(10, 110, 10),
n2=range(20, 210, 20),
n_enter=range(15, 35, 5),
n_exit=range(10, 25, 5),
constraint=lambda p: p.n_exit < p.n_enter < p.n1 < p.n2,
maximize='Equity Final [$]',
max_tries=200,
method='skopt',
random_state=0,
return_heatmap=True)
print(stats)
技术原理
Python的多进程模块在Windows上使用spawn方式启动新进程时,会重新执行主模块中的所有代码。如果没有if __name__ == '__main__':保护,就会形成以下循环:
- 主进程执行脚本
- 创建子进程时重新导入模块
- 新导入的模块再次尝试创建子进程
- 重复步骤2-3,最终导致错误
if __name__ == '__main__':确保了只有在直接运行该脚本时才会执行优化代码,而在被导入为模块时不会执行。
额外建议
- 对于大型优化任务,可以适当调整
max_tries参数控制尝试次数 - 考虑使用更高效的优化方法如'skopt'(Scikit-Optimize)替代默认的网格搜索
- 在Windows上开发时,建议在较简单的参数空间上先测试代码正确性
- 对于复杂策略,可以先使用单进程模式测试(设置
parallel=False)
通过遵循这些最佳实践,可以确保backtesting.py的参数优化功能在各种环境下都能稳定运行,充分发挥多核CPU的计算能力,提高策略开发效率。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136