解决backtesting.py多进程优化时的RuntimeError问题
2025-06-03 01:42:46作者:侯霆垣
在使用backtesting.py进行策略参数优化时,开发者可能会遇到一个常见的多进程错误:"RuntimeError: An attempt has been made to start a new process before the current process has finished its bootstrapping phase"。这个问题源于Python多进程模块的特殊工作机制,特别是在Windows操作系统上更为常见。
问题本质
当使用backtesting.py的optimize()方法进行参数优化时,该库会默认使用多进程并行计算来提高优化效率。然而,在Windows系统上,Python的多进程实现与Unix-like系统不同,它使用spawn而非fork来创建新进程。这种差异导致在模块导入和执行顺序上需要特别注意。
错误原因
在Windows环境下,每个新启动的子进程都会重新导入主模块。如果主模块中的代码没有放在if __name__ == '__main__':保护块中,就会导致无限递归地创建新进程,最终引发RuntimeError。
解决方案
正确的做法是将执行代码包裹在if __name__ == '__main__':块中:
from backtesting import Strategy, Backtest
from backtesting.lib import crossover
from backtesting.test import SMA, GOOG
class Sma4Cross(Strategy):
# 策略实现代码...
if __name__ == '__main__':
backtest = Backtest(GOOG, Sma4Cross, commission=.002)
stats, heatmap = backtest.optimize(
n1=range(10, 110, 10),
n2=range(20, 210, 20),
n_enter=range(15, 35, 5),
n_exit=range(10, 25, 5),
constraint=lambda p: p.n_exit < p.n_enter < p.n1 < p.n2,
maximize='Equity Final [$]',
max_tries=200,
method='skopt',
random_state=0,
return_heatmap=True)
print(stats)
技术原理
Python的多进程模块在Windows上使用spawn方式启动新进程时,会重新执行主模块中的所有代码。如果没有if __name__ == '__main__':保护,就会形成以下循环:
- 主进程执行脚本
- 创建子进程时重新导入模块
- 新导入的模块再次尝试创建子进程
- 重复步骤2-3,最终导致错误
if __name__ == '__main__':确保了只有在直接运行该脚本时才会执行优化代码,而在被导入为模块时不会执行。
额外建议
- 对于大型优化任务,可以适当调整
max_tries参数控制尝试次数 - 考虑使用更高效的优化方法如'skopt'(Scikit-Optimize)替代默认的网格搜索
- 在Windows上开发时,建议在较简单的参数空间上先测试代码正确性
- 对于复杂策略,可以先使用单进程模式测试(设置
parallel=False)
通过遵循这些最佳实践,可以确保backtesting.py的参数优化功能在各种环境下都能稳定运行,充分发挥多核CPU的计算能力,提高策略开发效率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 STM32到GD32项目移植完全指南:从兼容性到实战技巧 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120