Speedtest Tracker安装与配置指南
Speedtest Tracker是一款自托管的互联网性能跟踪应用,它通过Ookla的Speedtest服务运行速度测试。本指南将帮助您了解其基本架构,并指导您如何启动和配置此项目。
1. 项目目录结构及介绍
Speedtest Tracker的项目结构遵循了典型的Laravel应用程序布局,以下是关键目录的简要说明:
- public:存放前端资源,如CSS、JavaScript和静态网页。
- routes:定义应用的所有路由,包括Web和API的路由文件。
- app:主要的应用逻辑层,包括模型(Models)、控制器(Controllers)、中间件(Middlewares)等。
- database:数据库迁移文件和种子文件,用于设置数据库结构。
- config:存储所有配置信息,包括连接数据库和其他环境特定配置。
- docker:Docker相关配置,用于容器化部署。
- env:示例环境变量文件,引导用户如何设置环境变量。
- .gitignore 和其他标准Git配置文件。
- LICENSE: 许可证文件,表明采用MIT许可证。
- README.md: 项目的主要读我文件,概述项目和快速入门步骤。
- SECURITY.md: 提供关于安全问题提交的信息。
2. 项目的启动文件介绍
Speedtest Tracker设计为可以使用Docker轻松部署。因此,主要的“启动文件”不是传统意义上的单一文件,而是Docker相关的配置,尤其是docker-compose.yml如果使用Docker Compose,或者直接使用docker run命令。
Docker Compose方式
如果您选择使用Docker Compose,核心配置位于docker-compose.yml文件中。该文件定义了服务容器,比如应用服务、可能的数据库服务等,以及它们之间的关系、端口映射、卷挂载等。
version: '3'
services:
speedtest-tracker:
image: lscr.io/linuxserver/speedtest-tracker:0.20.6
ports:
- "8080:80"
environment:
- APP_URL=http://localhost
volumes:
- ./data:/config
直接使用Docker方式
对于手动使用Docker的情况,通过执行一个命令来启动容器,例如:
docker run -d --name speedtest-tracker ... lscr.io/linuxserver/speedtest-tracker:0.20.6
其中,上述命令中的省略号代表一系列的环境变量和绑定选项。
3. 项目的配置文件介绍
配置主要分布在多个地方,但最关键的是环境变量(通常通过.env文件管理)和可能的数据库配置文件。
-
.env: 这个文件存储敏感或特定于部署的配置,如数据库连接字符串、应用URL和密钥。示例中的环境变量包括
APP_KEY,APP_URL, 和DB_CONNECTION等。 -
config/database.php: 如果不完全依赖于环境变量,数据库连接详细信息也可以在这里进行更为详细的配置,支持SQLite、MySQL/MariaDB、PostgreSQL等多种数据库系统。
确保在启动应用前,根据项目文档正确设置了.env文件内的各项配置,以确保应用能够正常运行且连接到正确的数据库和服务。
环境变量的重要性
Speedtest Tracker特别强调了APP_KEY的生成,这是一串唯一的安全密钥,用于加密和安全目的。它可以通过访问项目的文档页面找到生成方法,通常是通过PHP artisan命令自动生成。
总结起来,通过理解和配置这些关键部分,您可以顺利地部署和使用Speedtest Tracker来监控您的网络性能。记得在操作过程中参考最新的官方文档,因为具体细节可能会随着版本更新而变化。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00