GLL Combinators 技术文档
本文档旨在帮助用户安装和使用 GLL Combinators,并详细解释其项目API。以下是项目的技术文档,包括安装指南、使用说明以及API使用文档。
1. 安装指南
GLL Combinators 的编译构件已推送到 Maven Central,groupId 为 com.codecommit,artifactId 为 gll-combinators。最新稳定版本为 2.3。此构件为 Scala 2.10、2.11 和 2.12 跨发布。如果您使用 SBT,只需将以下构件描述复制并粘贴到您的 build.sbt 文件中:
libraryDependencies += "com.codecommit" %% "gll-combinators" % "2.3"
安装完成后,以下包可供使用:
com.codecommit.gll—— 框架的完整公共接口。com.codecommit.util—— 内部使用的许多有用的工具类。不应将其视为稳定API的一部分。
2. 项目使用说明
GLL Combinators 是一个用于以函数式方式实现 GLL 解析算法的框架。该框架使用原子解析组合子来构造语法,然后使用 GLL 算法进行评估。以下是使用 GLL Combinators 的基本示例:
lazy val expr: Parser[Any] = (
"(" ~ expr ~ ")"
| ""
)
您可以调用此解析器,如下所示:
expr("((()))")
返回值类型为 Stream[Result[Any]]。Result[A] ADT 定义为以下类型之一:
Success[A]—— 表示解析成功并包含结果值。Failure—— 表示解析失败并包含相关错误消息以及解析流中未被消耗的部分。
如果任一结果是成功的(即 Success[A] 实例),则不会返回失败。因此,返回的 Stream 将完全同质,只包含 Success 或 Failure 中的一个。
3. 项目API使用文档
GLL Combinators 提供了用于构造语法的解析器组合子。以下是组合子的一些基本用法:
~—— 用于连接两个解析器。^^—— 用于在解析成功后执行语义动作。
例如,以下是使用 ^^ 组合子的一个表达式解析器:
lazy val expr: Parser[Int] = (
expr ~ "*" ~ expr ^^ { (e1, _, e2) => e1 * e2 }
| expr ~ "/" ~ expr ^^ { (e1, _, e2) => e1 / e2 }
| expr ~ "+" ~ expr ^^ { (e1, _, e2) => e1 + e2 }
| expr ~ "-" ~ expr ^^ { (e1, _, e2) => e1 - e2 }
| "(" ~> expr <~ ")"
| "-" ~> expr ^^ { -_ }
| """\d+""".r ^^ { _.toInt }
)
此解析器支持包括左递归和模糊性在内的复杂语法。
4. 项目安装方式
如前所述,您可以通过 SBT 添加 GLL Combinators 依赖项:
libraryDependencies += "com.codecommit" %% "gll-combinators" % "2.3"
然后,您可以编译并运行您的 Scala 项目,使用 GLL Combinators 提供的功能。
通过本文档,用户应能够成功安装和运行 GLL Combinators,并了解如何使用其API进行解析器开发。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00