EvalScope v0.12.0 发布:模型推理效率评测与三大基准支持
EvalScope 是一个专注于大模型评测的开源工具,它提供了全面的评估框架和方法论,帮助研究人员和开发者客观衡量语言模型在各类任务上的表现。本次发布的 v0.12.0 版本带来了多项重要更新,特别是在模型推理效率评测和新增基准支持方面有显著提升。
思考效率评测功能
新版本最引人注目的特性是新增了对模型思考效率的评测能力。这项功能基于两篇重要的研究论文:《Overthinking》和《Underthinking》的理论基础,能够量化评估模型在推理过程中的效率表现。
思考效率评测主要关注以下几个方面:
- 模型是否过度思考(Overthinking):即模型在已经得出正确答案后仍继续生成不必要的推理步骤
- 模型是否思考不足(Underthinking):模型在未充分推理的情况下就给出最终答案
- 推理步骤与准确性的平衡关系
这项评测为研究人员提供了新的视角来理解模型的推理行为,有助于优化模型的推理策略和架构设计。
新增三大评测基准
v0.12.0 版本新增支持三个重要的模型推理评测基准:
-
AIME25:专注于评估模型在复杂推理任务中的表现,特别适合测试模型的多步推理能力。
-
MuSR:针对多模态理解和推理设计的基准,评估模型在处理跨模态信息时的表现。
-
ProcessBench:关注模型推理过程的基准,能够详细评估模型生成推理链的质量和连贯性。
这些基准的加入极大地扩展了 EvalScope 的评测范围,为用户提供了更全面的模型评估工具集。
技术优化与改进
除上述主要功能外,本次更新还包含多项技术优化:
-
流式模式支持:评测过程中现在可以使用流式传输模式,提高了大规模评测的效率。
-
请求超时控制:用户可以指定请求超时时间,增强了评测过程的稳定性和可控性。
-
MPS设备支持:新增对苹果M系列芯片(MPS设备)的本地评测支持,扩展了平台的兼容性。
-
性能优化:改进了token处理机制,优化了设备映射策略,提升了整体评测性能。
总结
EvalScope v0.12.0 通过引入思考效率评测和三大新基准,进一步巩固了其作为全面模型评测工具的地位。这些更新不仅丰富了评测维度,也为模型优化提供了更精细的指导方向。对于从事大模型研究和开发的团队来说,这些新功能将帮助他们更深入地理解模型行为,从而做出更有针对性的改进。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00