ScubaGear项目中的Microsoft Defender敏感信息保护策略优化
背景概述
在ScubaGear这个开源安全基线配置项目中,Microsoft Defender的相关配置策略一直受到开发团队的持续关注。近期,团队针对MS.DEFENDER.4.1v1策略中的语言表述进行了优化讨论,目的是使策略描述更加清晰准确,同时符合RFC关键字规范。
原策略分析
原策略表述为:"A custom policy SHALL be configured to protect PII and sensitive information, as defined by the agency. At a minimum, credit card numbers, U.S. Individual Taxpayer Identification Numbers (ITIN), and U.S. Social Security numbers (SSN) SHALL be blocked."
这段文字存在两个"SHALL"关键词,这不符合RFC标准文档的最佳实践。在技术文档特别是安全策略中,每个要求应该只包含一个明确的强制性关键词,以避免理解上的歧义。
优化方案
经过团队讨论,新的表述方式调整为:"A custom policy SHALL be configured to protect PII and sensitive information, as defined by the agency, blocking at a minimum: credit card numbers, U.S. Individual Taxpayer Identification Numbers (ITIN), and U.S. Social Security numbers (SSN)."
这种表述方式:
- 保留了原始策略的所有技术要求
- 消除了重复的SHALL关键词
- 使语句更加流畅连贯
- 保持了策略的强制性和明确性
版本更新影响
策略内容的修改触发了版本号的更新,从v1升级到v2。在ScubaGear项目中,策略版本更新涉及多个技术层面的同步修改:
- 文档层面:需要更新基线文档中的策略标题、引用链接和最后更新时间
- 代码层面:需要检查并可能修改相关的Rego策略代码
- 测试层面:需要更新测试用例和测试结果文件中的策略版本引用
- 跨文档引用:需要检查其他相关基线文档中对本策略的引用
技术实现要点
对于这类策略更新,开发团队总结了一套完整的更新流程:
- 首先修改基线文档中的策略描述
- 更新版本号和相关时间戳
- 检查并更新Rego策略代码中的版本注释
- 同步测试文件和测试结果中的策略版本
- 验证所有相关文档中的交叉引用
总结
这次策略优化虽然看似只是文字表述的微调,但体现了ScubaGear项目对技术文档严谨性的高标准要求。通过这样的持续优化,项目能够为使用者提供更加清晰、一致的安全配置指导,同时也为后续的策略维护建立了良好的版本管理实践。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00