Speeqe 项目技术文档
2024-12-20 06:13:20作者:龚格成
1. 安装指南
1.1 环境准备
在安装 Speeqe 之前,请确保您的系统满足以下要求:
- 操作系统:Linux 或 macOS
- 已安装 Python 3.x
- 已安装 Nginx 或 Apache
- 已安装 Django
1.2 下载代码
您可以通过以下命令从 GitHub 仓库下载 Speeqe 的最新代码:
git clone https://github.com/thepug/Speeqe.git
1.3 安装依赖
进入项目目录并安装所需的依赖包:
cd Speeqe
pip install -r requirements.txt
1.4 配置文件
在项目根目录下创建一个 settings.py 文件,并根据您的环境配置数据库、域名等信息。
1.5 启动服务
使用以下命令启动 Speeqe 服务:
python manage.py runserver
2. 项目的使用说明
2.1 创建聊天室
- 打开浏览器,访问
http://yourdomain.com。 - 在页面中点击“创建聊天室”按钮。
- 输入聊天室名称和描述,点击“创建”。
2.2 加入聊天室
- 在首页输入聊天室名称或 URL。
- 点击“加入”按钮,即可进入聊天室。
2.3 管理聊天室
- 踢出用户:在聊天室中点击用户头像,选择“踢出”。
- 禁言用户:在聊天室中点击用户头像,选择“禁言”。
- 配置聊天室:在聊天室设置页面中,可以修改聊天室名称、描述等信息。
3. 项目API使用文档
3.1 获取聊天室列表
请求URL:/api/rooms/
请求方法:GET
响应示例:
[
{
"id": 1,
"name": "General",
"description": "General discussion room"
},
{
"id": 2,
"name": "Tech",
"description": "Technical discussion room"
}
]
3.2 创建聊天室
请求URL:/api/rooms/
请求方法:POST
请求参数:
{
"name": "New Room",
"description": "A new discussion room"
}
响应示例:
{
"id": 3,
"name": "New Room",
"description": "A new discussion room"
}
3.3 加入聊天室
请求URL:/api/rooms/{room_id}/join/
请求方法:POST
请求参数:
{
"user_id": 123
}
响应示例:
{
"status": "success",
"message": "User joined the room"
}
4. 项目安装方式
4.1 手动安装
按照上述“安装指南”中的步骤,手动配置和启动 Speeqe 服务。
4.2 使用 TurnKey ejabberd 虚拟机
TurnKey ejabberd 是一个预打包的虚拟机,集成了 Speeqe 和 ejabberd。您可以直接下载并部署该虚拟机,无需手动安装。
4.3 Docker 安装
Speeqe 也支持通过 Docker 进行安装。您可以使用以下命令拉取并运行 Speeqe 的 Docker 镜像:
docker pull speeqe/speeqe
docker run -d -p 80:80 speeqe/speeqe
通过以上步骤,您可以顺利安装并使用 Speeqe 项目。如有任何问题,请参考项目的 GitHub Wiki 或联系项目贡献者。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
583
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
395
仓颉编程语言运行时与标准库。
Cangjie
130
408
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205