首页
/ Headlamp项目内存监控指标异常问题分析与解决方案

Headlamp项目内存监控指标异常问题分析与解决方案

2025-06-18 17:21:35作者:段琳惟

问题背景

在Kubernetes集群监控中,内存使用量是一个关键指标。Headlamp作为Kubernetes的Web UI工具,通过Prometheus收集并展示Pod的内存使用情况。然而,用户发现当Pod包含多个容器时,Headlamp显示的内存使用量会出现异常翻倍现象,与Kubernetes Dashboard和kubectl top命令显示的结果不一致。

问题分析

指标收集机制

在Kubernetes中,内存使用量主要通过container_memory_working_set_bytes指标来采集。这个指标会记录每个容器的实际内存使用情况。对于包含多个容器的Pod,Prometheus会为每个容器生成单独的指标记录,同时也会记录Pod级别的汇总数据。

问题根源

Headlamp原有的Prometheus查询语句存在两个关键问题:

  1. 未过滤容器级指标:查询语句sum(container_memory_working_set_bytes{...})会汇总所有匹配的指标,包括Pod级别的汇总数据和各个容器的独立数据,导致重复计算。

  2. 不必要的sum聚合:由于查询条件已经通过namespace和pod名称精确匹配到特定Pod,sum聚合函数反而会导致数据异常。

解决方案

优化查询语句

针对上述问题,提出以下优化方案:

  1. 添加容器过滤条件:通过container!=''条件排除Pod级别的汇总数据,只计算容器级别的内存使用量。

  2. 移除不必要的sum聚合:直接查询容器级别的指标值,避免重复计算。

优化后的查询语句示例:

container_memory_working_set_bytes{container!='', namespace='${namespace}',pod='${pod-name}'}

实现验证

该方案已在Headlamp的插件中实现,并经过验证:

  1. 对于单容器Pod,显示结果与其他工具一致
  2. 对于多容器Pod,内存使用量不再出现翻倍现象
  3. 与kubectl top命令和Kubernetes Dashboard的显示结果保持一致

技术启示

  1. 指标理解的重要性:在使用Prometheus监控Kubernetes时,必须深入理解各个指标的实际含义和采集方式。

  2. 查询优化技巧:合理使用标签过滤和聚合函数,避免数据重复或遗漏。

  3. 监控一致性:不同监控工具间的数据对比是验证监控准确性的有效方法。

总结

通过本次问题排查,不仅解决了Headlamp内存显示异常的问题,也为Kubernetes监控实践提供了有价值的经验。在复杂的容器环境中,监控指标的精确采集和展示需要开发人员对底层机制有深入理解,并通过多工具对比验证来确保数据的准确性。

登录后查看全文
热门项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8