Headlamp项目内存监控指标异常问题分析与解决方案
问题背景
在Kubernetes集群监控中,内存使用量是一个关键指标。Headlamp作为Kubernetes的Web UI工具,通过Prometheus收集并展示Pod的内存使用情况。然而,用户发现当Pod包含多个容器时,Headlamp显示的内存使用量会出现异常翻倍现象,与Kubernetes Dashboard和kubectl top命令显示的结果不一致。
问题分析
指标收集机制
在Kubernetes中,内存使用量主要通过container_memory_working_set_bytes指标来采集。这个指标会记录每个容器的实际内存使用情况。对于包含多个容器的Pod,Prometheus会为每个容器生成单独的指标记录,同时也会记录Pod级别的汇总数据。
问题根源
Headlamp原有的Prometheus查询语句存在两个关键问题:
-
未过滤容器级指标:查询语句
sum(container_memory_working_set_bytes{...})会汇总所有匹配的指标,包括Pod级别的汇总数据和各个容器的独立数据,导致重复计算。 -
不必要的sum聚合:由于查询条件已经通过namespace和pod名称精确匹配到特定Pod,sum聚合函数反而会导致数据异常。
解决方案
优化查询语句
针对上述问题,提出以下优化方案:
-
添加容器过滤条件:通过
container!=''条件排除Pod级别的汇总数据,只计算容器级别的内存使用量。 -
移除不必要的sum聚合:直接查询容器级别的指标值,避免重复计算。
优化后的查询语句示例:
container_memory_working_set_bytes{container!='', namespace='${namespace}',pod='${pod-name}'}
实现验证
该方案已在Headlamp的插件中实现,并经过验证:
- 对于单容器Pod,显示结果与其他工具一致
- 对于多容器Pod,内存使用量不再出现翻倍现象
- 与kubectl top命令和Kubernetes Dashboard的显示结果保持一致
技术启示
-
指标理解的重要性:在使用Prometheus监控Kubernetes时,必须深入理解各个指标的实际含义和采集方式。
-
查询优化技巧:合理使用标签过滤和聚合函数,避免数据重复或遗漏。
-
监控一致性:不同监控工具间的数据对比是验证监控准确性的有效方法。
总结
通过本次问题排查,不仅解决了Headlamp内存显示异常的问题,也为Kubernetes监控实践提供了有价值的经验。在复杂的容器环境中,监控指标的精确采集和展示需要开发人员对底层机制有深入理解,并通过多工具对比验证来确保数据的准确性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00