开源项目 `modules.tf-lambda` 使用教程
2024-09-10 16:38:08作者:邵娇湘
1. 项目的目录结构及介绍
modules.tf-lambda/
├── src/
│ └── handler.py
├── terraform/
│ ├── main.tf
│ ├── variables.tf
│ └── terraform.tfvars
├── test_fixtures/
│ └── input/
│ └── blueprint_my.json
├── tests/
├── .editorconfig
├── .flake8
├── .gitignore
├── .pre-commit-config.yaml
├── .snyk
├── CHANGELOG.md
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── LICENSE
├── Makefile
├── README.md
└── requirements.txt
目录结构介绍
- src/: 包含项目的源代码,主要处理逻辑在
handler.py
文件中。 - terraform/: 包含 Terraform 配置文件,用于定义和部署基础设施资源。
main.tf
: 主 Terraform 配置文件。variables.tf
: 定义 Terraform 变量。terraform.tfvars
: 存储 Terraform 变量的具体值。
- test_fixtures/: 包含测试用例的输入数据。
- tests/: 包含项目的测试代码。
- .editorconfig: 配置文件,用于统一代码风格。
- .flake8: 配置文件,用于代码风格检查。
- .gitignore: 指定 Git 忽略的文件和目录。
- .pre-commit-config.yaml: 配置文件,用于定义 Git 预提交钩子。
- .snyk: 配置文件,用于 Snyk 安全扫描。
- CHANGELOG.md: 记录项目的变更日志。
- CODE_OF_CONDUCT.md: 项目的行为准则。
- CONTRIBUTING.md: 贡献指南。
- LICENSE: 项目的开源许可证。
- Makefile: 包含项目的构建和部署命令。
- README.md: 项目的介绍和使用说明。
- requirements.txt: 项目的依赖包列表。
2. 项目的启动文件介绍
项目的启动文件位于 src/handler.py
。该文件包含了主要的业务逻辑,通常是 Lambda 函数的入口点。启动文件的主要功能是处理传入的请求并返回响应。
src/handler.py
文件介绍
# src/handler.py
def lambda_handler(event, context):
# 处理传入的 event 和 context
# 返回响应
return {
'statusCode': 200,
'body': 'Hello from Lambda!'
}
- lambda_handler: 这是 Lambda 函数的入口点,接收
event
和context
参数,并返回一个包含statusCode
和body
的响应。
3. 项目的配置文件介绍
terraform/main.tf
main.tf
是 Terraform 的主配置文件,定义了基础设施资源。例如:
provider "aws" {
region = "us-west-2"
}
resource "aws_lambda_function" "example" {
function_name = "example_lambda"
handler = "handler.lambda_handler"
runtime = "python3.8"
filename = "lambda_function_payload.zip"
}
- provider: 定义了使用的云服务提供商(如 AWS)。
- resource: 定义了具体的资源,如 Lambda 函数。
terraform/variables.tf
variables.tf
定义了 Terraform 的变量:
variable "region" {
description = "The AWS region to deploy to"
default = "us-west-2"
}
- variable: 定义了一个变量
region
,并提供了默认值。
terraform/terraform.tfvars
terraform.tfvars
存储了变量的具体值:
region = "us-west-2"
- region: 指定了 AWS 区域。
通过这些配置文件,可以定义和部署基础设施资源,如 Lambda 函数。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
530
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401