parsedmarc 开源项目教程
1. 项目介绍
parsedmarc
是一个用于解析 DMARC 报告的 Python 模块和命令行工具。DMARC(Domain-based Message Authentication, Reporting, and Conformance)是一种电子邮件认证协议,旨在防止电子邮件欺骗和钓鱼攻击。parsedmarc
能够解析聚合报告(aggregate reports)和法医报告(forensic reports),并将其输出为 JSON 或 CSV 格式。此外,它还可以与 Elasticsearch、Kibana、Splunk 等工具集成,提供自托管的开源替代方案,以替代商业化的 DMARC 报告处理服务。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 3.6 或更高版本。然后,使用 pip 安装 parsedmarc
:
pip install parsedmarc
2.2 配置文件
parsedmarc
可以通过配置文件进行配置。以下是一个示例配置文件 parsedmarc.ini
:
[general]
save_aggregate = True
save_forensic = True
[imap]
host = imap.example.com
user = dmarcreports@example.com
password = $uperSecure
[elasticsearch]
hosts = 127.0.0.1:9200
ssl = False
2.3 运行
使用配置文件运行 parsedmarc
:
parsedmarc -c parsedmarc.ini
3. 应用案例和最佳实践
3.1 邮件安全监控
parsedmarc
可以与 Elasticsearch 和 Kibana 集成,用于监控和分析 DMARC 报告。通过 Kibana 的仪表盘,可以实时查看邮件安全状态,识别潜在的钓鱼攻击和邮件欺骗行为。
3.2 合规性报告
在金融、医疗等高度监管的行业中,parsedmarc
可以帮助企业生成合规性报告,确保邮件系统的安全性和合规性。
3.3 自动化处理
通过配置 parsedmarc
的 IMAP 或 Microsoft Graph 集成,可以实现 DMARC 报告的自动化处理和分析,减少人工干预,提高效率。
4. 典型生态项目
4.1 Elasticsearch 和 Kibana
parsedmarc
可以与 Elasticsearch 和 Kibana 集成,提供强大的搜索和可视化功能。Elasticsearch 用于存储和索引 DMARC 报告数据,Kibana 则用于创建仪表盘和分析报告。
4.2 Splunk
对于已经使用 Splunk 的企业,parsedmarc
可以与 Splunk 集成,将 DMARC 报告数据导入 Splunk,并通过 Splunk 的搜索和分析功能进行进一步处理。
4.3 OpenSearch 和 Grafana
对于希望使用开源替代方案的用户,parsedmarc
可以与 OpenSearch 和 Grafana 集成,提供类似 Elasticsearch 和 Kibana 的功能。
通过以上步骤,你可以快速上手 parsedmarc
项目,并将其应用于实际的邮件安全监控和合规性报告中。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
项目优选









