parsedmarc 开源项目教程
1. 项目介绍
parsedmarc 是一个用于解析 DMARC 报告的 Python 模块和命令行工具。DMARC(Domain-based Message Authentication, Reporting, and Conformance)是一种电子邮件认证协议,旨在防止电子邮件欺骗和钓鱼攻击。parsedmarc 能够解析聚合报告(aggregate reports)和法医报告(forensic reports),并将其输出为 JSON 或 CSV 格式。此外,它还可以与 Elasticsearch、Kibana、Splunk 等工具集成,提供自托管的开源替代方案,以替代商业化的 DMARC 报告处理服务。
2. 项目快速启动
2.1 安装
首先,确保你已经安装了 Python 3.6 或更高版本。然后,使用 pip 安装 parsedmarc:
pip install parsedmarc
2.2 配置文件
parsedmarc 可以通过配置文件进行配置。以下是一个示例配置文件 parsedmarc.ini:
[general]
save_aggregate = True
save_forensic = True
[imap]
host = imap.example.com
user = dmarcreports@example.com
password = $uperSecure
[elasticsearch]
hosts = 127.0.0.1:9200
ssl = False
2.3 运行
使用配置文件运行 parsedmarc:
parsedmarc -c parsedmarc.ini
3. 应用案例和最佳实践
3.1 邮件安全监控
parsedmarc 可以与 Elasticsearch 和 Kibana 集成,用于监控和分析 DMARC 报告。通过 Kibana 的仪表盘,可以实时查看邮件安全状态,识别潜在的钓鱼攻击和邮件欺骗行为。
3.2 合规性报告
在金融、医疗等高度监管的行业中,parsedmarc 可以帮助企业生成合规性报告,确保邮件系统的安全性和合规性。
3.3 自动化处理
通过配置 parsedmarc 的 IMAP 或 Microsoft Graph 集成,可以实现 DMARC 报告的自动化处理和分析,减少人工干预,提高效率。
4. 典型生态项目
4.1 Elasticsearch 和 Kibana
parsedmarc 可以与 Elasticsearch 和 Kibana 集成,提供强大的搜索和可视化功能。Elasticsearch 用于存储和索引 DMARC 报告数据,Kibana 则用于创建仪表盘和分析报告。
4.2 Splunk
对于已经使用 Splunk 的企业,parsedmarc 可以与 Splunk 集成,将 DMARC 报告数据导入 Splunk,并通过 Splunk 的搜索和分析功能进行进一步处理。
4.3 OpenSearch 和 Grafana
对于希望使用开源替代方案的用户,parsedmarc 可以与 OpenSearch 和 Grafana 集成,提供类似 Elasticsearch 和 Kibana 的功能。
通过以上步骤,你可以快速上手 parsedmarc 项目,并将其应用于实际的邮件安全监控和合规性报告中。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00