X-AnyLabeling项目中关键点标注数据导出问题解析
2025-06-08 00:41:30作者:尤辰城Agatha
背景介绍
X-AnyLabeling是一款开源的图像标注工具,广泛应用于计算机视觉领域的各类标注任务。在实际使用过程中,用户可能会遇到将标注数据导出为COCO格式时的特殊需求,特别是关于关键点检测任务的标注数据导出问题。
问题现象
在X-AnyLabeling中,当用户尝试将包含关键点(单点)标注的数据导出为COCO格式时,发现关键点信息未能正确保留。具体表现为:
- 对于矩形框标注(如"cover"标签),能够正确导出边界框信息
- 对于单点标注(如"1"和"2"标签),在导出的COCO格式中仅保留了类别信息,缺少关键点坐标数据
技术分析
COCO格式规范限制
标准COCO数据集格式主要针对以下几种标注类型进行了定义:
- 目标检测(边界框)
- 实例分割(多边形)
- 关键点检测(人体姿态)
然而,X-AnyLabeling当前版本的COCO导出功能主要实现了前两种标注类型的支持,对于关键点检测这种特殊场景尚未提供完整的导出支持。
关键点检测的特殊性
关键点检测任务与常规目标检测有以下显著区别:
- 标注形式为单点而非区域
- 需要定义关键点的可见性(可见/遮挡/不可见)
- 通常需要按照特定顺序组织关键点
- 可能需要定义关键点之间的连接关系
这些特性使得关键点标注的导出逻辑与常规目标检测有很大不同。
解决方案建议
对于需要在X-AnyLabeling中处理关键点检测任务的用户,可以考虑以下解决方案:
1. 自定义导出逻辑
通过修改X-AnyLabeling的源代码,扩展其COCO导出功能以支持关键点标注。主要修改点包括:
- 在类别定义中添加关键点名称和骨架连接信息
- 修改标注导出逻辑,正确处理单点类型的标注
- 添加关键点可见性等附加属性的处理
2. 使用中间格式转换
如果不想修改源代码,可以采用以下工作流程:
- 在X-AnyLabeling中完成标注
- 导出为原始JSON格式
- 编写自定义脚本将原始JSON转换为包含关键点信息的COCO格式
3. 等待官方功能更新
关注X-AnyLabeling的版本更新,未来版本可能会增加对关键点检测任务的原生支持。
技术实现细节
对于选择第一种解决方案的用户,以下是一些关键实现要点:
- COCO格式扩展:需要在categories字段中添加keypoints和skeleton子字段,定义关键点名称和连接关系
- 标注数据处理:对于shape_type为"point"的标注,应将其转换为COCO的keypoints数组格式
- 坐标转换:注意处理原始坐标与COCO格式要求的坐标表示方式的差异
- 可见性处理:为每个关键点添加可见性标志(通常为0不可见,1可见但遮挡,2完全可见)
总结
X-AnyLabeling作为一款通用标注工具,在特定任务如关键点检测上可能存在功能限制。理解这些限制背后的技术原因,并根据实际需求选择合适的解决方案,是高效使用该工具的关键。对于有特殊需求的用户,掌握工具的内部工作原理并能够进行适当扩展,将大大提升工作效率。
随着计算机视觉技术的发展,我们期待未来版本的X-AnyLabeling能够提供更全面的标注类型支持,满足各类复杂场景下的标注需求。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1