X-AnyLabeling项目中关键点标注数据导出问题解析
2025-06-08 09:28:41作者:尤辰城Agatha
背景介绍
X-AnyLabeling是一款开源的图像标注工具,广泛应用于计算机视觉领域的各类标注任务。在实际使用过程中,用户可能会遇到将标注数据导出为COCO格式时的特殊需求,特别是关于关键点检测任务的标注数据导出问题。
问题现象
在X-AnyLabeling中,当用户尝试将包含关键点(单点)标注的数据导出为COCO格式时,发现关键点信息未能正确保留。具体表现为:
- 对于矩形框标注(如"cover"标签),能够正确导出边界框信息
- 对于单点标注(如"1"和"2"标签),在导出的COCO格式中仅保留了类别信息,缺少关键点坐标数据
技术分析
COCO格式规范限制
标准COCO数据集格式主要针对以下几种标注类型进行了定义:
- 目标检测(边界框)
- 实例分割(多边形)
- 关键点检测(人体姿态)
然而,X-AnyLabeling当前版本的COCO导出功能主要实现了前两种标注类型的支持,对于关键点检测这种特殊场景尚未提供完整的导出支持。
关键点检测的特殊性
关键点检测任务与常规目标检测有以下显著区别:
- 标注形式为单点而非区域
- 需要定义关键点的可见性(可见/遮挡/不可见)
- 通常需要按照特定顺序组织关键点
- 可能需要定义关键点之间的连接关系
这些特性使得关键点标注的导出逻辑与常规目标检测有很大不同。
解决方案建议
对于需要在X-AnyLabeling中处理关键点检测任务的用户,可以考虑以下解决方案:
1. 自定义导出逻辑
通过修改X-AnyLabeling的源代码,扩展其COCO导出功能以支持关键点标注。主要修改点包括:
- 在类别定义中添加关键点名称和骨架连接信息
- 修改标注导出逻辑,正确处理单点类型的标注
- 添加关键点可见性等附加属性的处理
2. 使用中间格式转换
如果不想修改源代码,可以采用以下工作流程:
- 在X-AnyLabeling中完成标注
- 导出为原始JSON格式
- 编写自定义脚本将原始JSON转换为包含关键点信息的COCO格式
3. 等待官方功能更新
关注X-AnyLabeling的版本更新,未来版本可能会增加对关键点检测任务的原生支持。
技术实现细节
对于选择第一种解决方案的用户,以下是一些关键实现要点:
- COCO格式扩展:需要在categories字段中添加keypoints和skeleton子字段,定义关键点名称和连接关系
- 标注数据处理:对于shape_type为"point"的标注,应将其转换为COCO的keypoints数组格式
- 坐标转换:注意处理原始坐标与COCO格式要求的坐标表示方式的差异
- 可见性处理:为每个关键点添加可见性标志(通常为0不可见,1可见但遮挡,2完全可见)
总结
X-AnyLabeling作为一款通用标注工具,在特定任务如关键点检测上可能存在功能限制。理解这些限制背后的技术原因,并根据实际需求选择合适的解决方案,是高效使用该工具的关键。对于有特殊需求的用户,掌握工具的内部工作原理并能够进行适当扩展,将大大提升工作效率。
随着计算机视觉技术的发展,我们期待未来版本的X-AnyLabeling能够提供更全面的标注类型支持,满足各类复杂场景下的标注需求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869