Cypress Docker Images 教程
1. 项目介绍
Cypress Docker Images 是一个开源项目,提供预装了 Cypress 测试框架及其依赖的 Docker 镜像。这些镜像是在 Docker 官方镜像仓库上发布的,旨在简化在不同操作系统上运行 Cypress 测试的工作流程。项目提供了四种基础镜像,分别用于不同的需求,包括自定义模板、基本依赖、带有浏览器的依赖以及完全集成的环境。此外,还支持 amd64 和 arm64 架构的多平台镜像。
2. 项目快速启动
要开始使用 Cypress Docker Images,首先确保您已经安装了Docker。接下来,可以拉取并运行 Cypress 的 cypress/included 镜像来快速执行测试:
docker run --name=cypress-test --volume=$(pwd):/e2e --workdir=/e2e cypress/included:latest
这个命令将会把你的当前目录挂载到容器的 /e2e 目录下,并运行其中的 Cypress 测试。记得将 latest 替换为你需要的具体版本号。
注意:请确保您的测试文件结构符合Cypress的期望,且
cypress.json文件位于/e2e目录中。
3. 应用案例和最佳实践
容器化测试环境
使用 Cypress Docker Images 可以确保测试环境的一致性,无论是在本地开发还是在 CI 系统上。例如,在 Jenkins 中,你可以创建如下的 pipeline 脚本:
pipeline {
agent {
docker {
image 'cypress/included:<version>'
}
}
stages {
stage('Test') {
steps {
sh './node_modules/.bin/cypress run'
}
}
}
}
自定义 Docker 映像
对于更复杂的需求,可以从 cypress/factory 镜像构建定制化的 Docker 映像,添加特定的依赖或配置。通过设置 ARG 参数,可以在构建时注入变量:
FROM cypress/factory
ARG CUSTOM_BROWSER=chrome:85
RUN npx cypress install && \
npx cypress install-browser $CUSTOM_BROWSER
然后使用 docker build 命令构建定制的镜像。
4. 典型生态项目
Cypress Docker Images 广泛应用于各种持续集成服务,如 CircleCI、GitLab CI/CD 和 Travis CI。它们通常与这些服务的 Docker 支持配合使用,以确保跨平台的测试一致性。例如,在 GitLab CI/CD 中,可以这样配置 .gitlab-ci.yml 文件:
test:
image: cypress/included:<version>
script:
- yarn install
- npx cypress run
通过这种方式,Cypress Docker Images 成为了自动化测试生态系统的一个关键组成部分,使得开发者能够轻松地在任何支持 Docker 的环境中运行端到端测试。
本教程覆盖了 Cypress Docker Images 的核心内容,从快速开始到最佳实践,以及它在现代软件开发中的应用场景。使用这些镜像,您可以实现高效且可重复的测试工作流,提高团队协作的效率和测试质量。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00