Cypress Docker Images 教程
1. 项目介绍
Cypress Docker Images 是一个开源项目,提供预装了 Cypress 测试框架及其依赖的 Docker 镜像。这些镜像是在 Docker 官方镜像仓库上发布的,旨在简化在不同操作系统上运行 Cypress 测试的工作流程。项目提供了四种基础镜像,分别用于不同的需求,包括自定义模板、基本依赖、带有浏览器的依赖以及完全集成的环境。此外,还支持 amd64 和 arm64 架构的多平台镜像。
2. 项目快速启动
要开始使用 Cypress Docker Images,首先确保您已经安装了Docker。接下来,可以拉取并运行 Cypress 的 cypress/included 镜像来快速执行测试:
docker run --name=cypress-test --volume=$(pwd):/e2e --workdir=/e2e cypress/included:latest
这个命令将会把你的当前目录挂载到容器的 /e2e 目录下,并运行其中的 Cypress 测试。记得将 latest 替换为你需要的具体版本号。
注意:请确保您的测试文件结构符合Cypress的期望,且
cypress.json文件位于/e2e目录中。
3. 应用案例和最佳实践
容器化测试环境
使用 Cypress Docker Images 可以确保测试环境的一致性,无论是在本地开发还是在 CI 系统上。例如,在 Jenkins 中,你可以创建如下的 pipeline 脚本:
pipeline {
agent {
docker {
image 'cypress/included:<version>'
}
}
stages {
stage('Test') {
steps {
sh './node_modules/.bin/cypress run'
}
}
}
}
自定义 Docker 映像
对于更复杂的需求,可以从 cypress/factory 镜像构建定制化的 Docker 映像,添加特定的依赖或配置。通过设置 ARG 参数,可以在构建时注入变量:
FROM cypress/factory
ARG CUSTOM_BROWSER=chrome:85
RUN npx cypress install && \
npx cypress install-browser $CUSTOM_BROWSER
然后使用 docker build 命令构建定制的镜像。
4. 典型生态项目
Cypress Docker Images 广泛应用于各种持续集成服务,如 CircleCI、GitLab CI/CD 和 Travis CI。它们通常与这些服务的 Docker 支持配合使用,以确保跨平台的测试一致性。例如,在 GitLab CI/CD 中,可以这样配置 .gitlab-ci.yml 文件:
test:
image: cypress/included:<version>
script:
- yarn install
- npx cypress run
通过这种方式,Cypress Docker Images 成为了自动化测试生态系统的一个关键组成部分,使得开发者能够轻松地在任何支持 Docker 的环境中运行端到端测试。
本教程覆盖了 Cypress Docker Images 的核心内容,从快速开始到最佳实践,以及它在现代软件开发中的应用场景。使用这些镜像,您可以实现高效且可重复的测试工作流,提高团队协作的效率和测试质量。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00