HunyuanVideo-Avatar 的安装和配置教程
2025-05-29 22:29:28作者:郜逊炳
1. 项目基础介绍和主要编程语言
HunyuanVideo-Avatar 是一个基于多模态扩散变换器(MM-DiT)的模型,能够生成动态、情感可控的多角色对话视频。该项目旨在解决音频驱动的人像动画中的关键挑战,如保持角色一致性、实现角色与音频之间的精确情感对齐以及支持多角色音频驱动动画。主要编程语言为 Python。
2. 项目使用的关键技术和框架
- 多模态扩散变换器(MM-DiT):这是项目中的核心框架,用于生成具有高动态范围和情感控制能力的视频。
- 字符图像注入模块:用于替代传统的基于加法的角色条件模块,确保训练和推理之间的一致性,从而实现动态动作和强烈的角色一致性。
- 音频情感模块(AEM):从情感参考图像中提取并转移情感线索到目标生成的视频中,实现精细且准确情感风格控制。
- 面向人脸的音频适配器(FAA):通过在潜在级别上的面部遮罩来隔离音频驱动的角色,实现多角色场景中的独立音频注入。
此外,项目还使用了 PyTorch、CUDA 等深度学习框架和库。
3. 项目安装和配置的准备工作与详细安装步骤
准备工作:
- 确保您的系统为 Linux 操作系统。
- 准备具有 CUDA 支持的 NVIDIA GPU,推荐使用至少 96GB 显存以确保更好的生成质量。
安装步骤:
-
克隆项目仓库:
git clone https://github.com/Tencent-Hunyuan/HunyuanVideo-Avatar.git cd HunyuanVideo-Avatar
-
创建 Conda 环境:
conda create -n HunyuanVideo-Avatar python==3.10.9
-
激活 Conda 环境:
conda activate HunyuanVideo-Avatar
-
安装 PyTorch 和其他依赖项: 根据您安装的 CUDA 版本选择以下命令之一:
- 对于 CUDA 11.8:
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=11.8 -c pytorch -c nvidia
- 对于 CUDA 12.4:
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia
- 对于 CUDA 11.8:
-
安装 pip 依赖项:
python -m pip install -r requirements.txt
-
(可选)安装 Flash Attention v2 以加速:
python -m pip install ninja python -m pip install git+https://github.com/Dao-AILab/flash-attention.git@v2.6.3
-
运行 Docker 容器(可选): 根据您的 CUDA 版本选择以下命令之一:
- 对于 CUDA 12.4:
docker pull hunyuanvideo/hunyuanvideo:cuda_12 docker run -itd --gpus all --init --net=host --uts=host --ipc=host --name hunyuanvideo --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged hunyuanvideo/hunyuanvideo:cuda_12 pip install gradio==3.39.0 diffusers==0.33.0 transformers==4.41.2
- 对于 CUDA 11.8:
docker pull hunyuanvideo/hunyuanvideo:cuda_11 docker run -itd --gpus all --init --net=host --uts=host --ipc=host --name hunyuanvideo --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged hunyuanvideo/hunyuanvideo:cuda_11 pip install gradio==3.39.0 diffusers==0.33.0 transformers==4.41.2
- 对于 CUDA 12.4:
注意事项:
- 如果遇到浮点异常或内存不足的情况,请尝试减少图像分辨率或使用更高显存的 GPU。
- 确保安装了与 CUDA 版本兼容的 CUBLAS 和 CUDNN。
按照以上步骤操作,您应该能够成功安装和配置 HunyuanVideo-Avatar 项目。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5