HunyuanVideo-Avatar 的安装和配置教程
2025-05-29 13:02:17作者:郜逊炳
1. 项目基础介绍和主要编程语言
HunyuanVideo-Avatar 是一个基于多模态扩散变换器(MM-DiT)的模型,能够生成动态、情感可控的多角色对话视频。该项目旨在解决音频驱动的人像动画中的关键挑战,如保持角色一致性、实现角色与音频之间的精确情感对齐以及支持多角色音频驱动动画。主要编程语言为 Python。
2. 项目使用的关键技术和框架
- 多模态扩散变换器(MM-DiT):这是项目中的核心框架,用于生成具有高动态范围和情感控制能力的视频。
- 字符图像注入模块:用于替代传统的基于加法的角色条件模块,确保训练和推理之间的一致性,从而实现动态动作和强烈的角色一致性。
- 音频情感模块(AEM):从情感参考图像中提取并转移情感线索到目标生成的视频中,实现精细且准确情感风格控制。
- 面向人脸的音频适配器(FAA):通过在潜在级别上的面部遮罩来隔离音频驱动的角色,实现多角色场景中的独立音频注入。
此外,项目还使用了 PyTorch、CUDA 等深度学习框架和库。
3. 项目安装和配置的准备工作与详细安装步骤
准备工作:
- 确保您的系统为 Linux 操作系统。
- 准备具有 CUDA 支持的 NVIDIA GPU,推荐使用至少 96GB 显存以确保更好的生成质量。
安装步骤:
-
克隆项目仓库:
git clone https://github.com/Tencent-Hunyuan/HunyuanVideo-Avatar.git cd HunyuanVideo-Avatar -
创建 Conda 环境:
conda create -n HunyuanVideo-Avatar python==3.10.9 -
激活 Conda 环境:
conda activate HunyuanVideo-Avatar -
安装 PyTorch 和其他依赖项: 根据您安装的 CUDA 版本选择以下命令之一:
- 对于 CUDA 11.8:
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=11.8 -c pytorch -c nvidia - 对于 CUDA 12.4:
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia
- 对于 CUDA 11.8:
-
安装 pip 依赖项:
python -m pip install -r requirements.txt -
(可选)安装 Flash Attention v2 以加速:
python -m pip install ninja python -m pip install git+https://github.com/Dao-AILab/flash-attention.git@v2.6.3 -
运行 Docker 容器(可选): 根据您的 CUDA 版本选择以下命令之一:
- 对于 CUDA 12.4:
docker pull hunyuanvideo/hunyuanvideo:cuda_12 docker run -itd --gpus all --init --net=host --uts=host --ipc=host --name hunyuanvideo --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged hunyuanvideo/hunyuanvideo:cuda_12 pip install gradio==3.39.0 diffusers==0.33.0 transformers==4.41.2 - 对于 CUDA 11.8:
docker pull hunyuanvideo/hunyuanvideo:cuda_11 docker run -itd --gpus all --init --net=host --uts=host --ipc=host --name hunyuanvideo --security-opt=seccomp=unconfined --ulimit=stack=67108864 --ulimit=memlock=-1 --privileged hunyuanvideo/hunyuanvideo:cuda_11 pip install gradio==3.39.0 diffusers==0.33.0 transformers==4.41.2
- 对于 CUDA 12.4:
注意事项:
- 如果遇到浮点异常或内存不足的情况,请尝试减少图像分辨率或使用更高显存的 GPU。
- 确保安装了与 CUDA 版本兼容的 CUBLAS 和 CUDNN。
按照以上步骤操作,您应该能够成功安装和配置 HunyuanVideo-Avatar 项目。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
458
3.42 K
暂无简介
Dart
710
170
Ascend Extension for PyTorch
Python
265
299
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
182
67
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
431
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
103
118