在Recognize-Anything项目中微调Tag2Text模型自定义标签指南
2025-06-25 22:48:07作者:薛曦旖Francesca
Recognize-Anything项目中的Tag2Text模型是一个强大的视觉-语言模型,能够同时完成图像标注和文本生成任务。本文将详细介绍如何在该项目中微调Tag2Text模型以适应自定义标签集。
模型微调准备工作
要微调Tag2Text模型,首先需要准备自定义标签列表。与原始模型使用的3429个标签不同,我们可以完全替换为自定义的标签集,例如100个特定领域的标签。标签列表文件不需要特定的排序规则,只需确保每个标签独占一行。
关键组件重新初始化
由于Tag2Text模型中有三个组件与标签集直接相关,在加载预训练权重时需要特别注意:
- self.fc:全连接层,其权重维度与标签数量直接相关
- self.label_embed:标签嵌入层,存储每个标签的向量表示
- self.class_threshold:分类阈值参数
这些组件需要根据新的标签数量重新初始化,因为它们的参数维度与标签数量紧密耦合。
训练数据准备
训练数据集需要包含以下三个关键字段:
- image:图像数据
- text:与图像对应的描述文本
- parse_label_id:从文本解析出的标签ID
值得注意的是,如果仅微调Tag2Text模型,可以忽略union_label_id字段,该字段是为项目中的RAM模型设计的。
参数初始化策略
当自定义标签集与原始标签集有部分重叠时,可以采用以下初始化策略:
- 对于重叠的标签,保留预训练的嵌入向量
- 对于新增的标签,随机初始化其嵌入向量
- 全连接层参数可以完全重新初始化
这种策略既保留了预训练模型的知识,又能适应新的标签空间。在实现上,可以通过截取原始权重矩阵的部分行,并与随机初始化的新行拼接来完成。
训练过程观察
在实际训练过程中,可以观察到两个损失项:
- loss_t2t:文本生成任务的损失
- loss_tag:标签预测任务的损失
随着训练的进行,这两个损失值应该呈现下降趋势,表明模型正在学习适应新的标签集。
注意事项
- 数据加载类可能需要调整以适应仅包含parse_label_id的情况
- 学习率设置应适当降低,因为是在预训练模型基础上进行微调
- 批量大小根据GPU内存合理设置,确保训练效率
通过以上步骤,开发者可以成功地将Tag2Text模型适配到特定领域的自定义标签集上,实现更精准的图像标注和描述生成。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
114
仓颉编译器源码及 cjdb 调试工具。
C++
138
869