HTML_CodeSniffer 的安装和配置教程
项目的基础介绍和主要的编程语言
HTML_CodeSniffer 是一个开源的客户端 JavaScript 应用程序,用于检查 HTML 文档或源代码,并检测违反定义的呈现或可访问性标准的违规行为。该项目主要用于检查 Web 内容的可访问性,例如 W3C 的 Web 内容可访问性指南 (WCAG) 2.1 和美国 Section 508 法案。
HTML_CodeSniffer 主要使用 JavaScript 编程语言,同时也依赖于 Node.js 和 Grunt 任务运行器来进行构建和打包。
项目使用的关键技术和框架
该项目使用以下关键技术和框架:
- JavaScript:用于实现检查和报告功能的核心语言。
- Node.js:用于在服务器端运行 JavaScript 代码。
- Grunt:一个基于 Node.js 的任务运行器,用于自动化构建过程。
- PhantomJS 或 Puppeteer:可选的 headless 浏览器工具,用于在命令行中运行 HTML_CodeSniffer。
- JSDom:一个 JavaScript 库,用于在 Node.js 环境中模拟 DOM。
项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装 HTML_CodeSniffer 之前,请确保您的系统已经安装以下软件:
- Node.js(建议版本 6.0 或更高)
- npm(Node.js 包管理器)
- Grunt CLI(如果尚未安装)
安装步骤
-
克隆项目仓库
打开命令行工具,使用以下命令克隆项目仓库到本地目录:
git clone https://github.com/squizlabs/HTML_CodeSniffer.git -
安装依赖
进入项目目录,使用 npm 安装项目所需的依赖:
cd HTML_CodeSniffer npm install -
构建审计器
使用 Grunt 构建审计器。在项目目录中运行以下命令:
grunt build构建完成后,您将在
build目录中找到审计器文件。 -
配置审计器
将审计器文件移动到 Web 可访问的位置,或者创建一个符号链接到
build目录。然后,从 HTML_CodeSniffer 网站获取审计器书签代码,将起始目录替换为您本地 URL,并保存为新的书签代码。
-
使用命令行处理
如果您希望使用命令行处理 HTML_CodeSniffer,您可以选择安装 PhantomJS 或使用 Puppeteer。
-
安装 PhantomJS:
npm install -g phantomjs-prebuilt -
使用 Puppeteer:
npm i puppeteer-core
请参考项目文档中的示例代码,了解如何使用这些工具。
-
-
使用 Node.js 和 JSDom
如果您希望在服务器端使用 HTML_CodeSniffer 而不使用 headless 浏览器,可以安装 JSDom:
npm install jsdom然后,使用 Node.js 运行以下示例脚本:
var jsdom = require('jsdom'); var { JSDOM } = jsdom; var fs = require('fs'); var HTMLCS = fs.readFileSync('./build/HTMLCS.js', 'utf-8'); var vConsole = new jsdom.VirtualConsole(); vConsole.on('log', function(message) { console.log(message); }); var dom = new JSDOM('<img src="test.png" />', { runScripts: 'dangerously', virtualConsole: vConsole }); dom.window.eval(HTMLCS); dom.window.HTMLCS_RUNNER.run('WCAG2AA');
通过以上步骤,您应该能够成功安装和配置 HTML_CodeSniffer,并根据您的需求使用它来检查 HTML 文档的可访问性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00