HTML_CodeSniffer 的安装和配置教程
项目的基础介绍和主要的编程语言
HTML_CodeSniffer 是一个开源的客户端 JavaScript 应用程序,用于检查 HTML 文档或源代码,并检测违反定义的呈现或可访问性标准的违规行为。该项目主要用于检查 Web 内容的可访问性,例如 W3C 的 Web 内容可访问性指南 (WCAG) 2.1 和美国 Section 508 法案。
HTML_CodeSniffer 主要使用 JavaScript 编程语言,同时也依赖于 Node.js 和 Grunt 任务运行器来进行构建和打包。
项目使用的关键技术和框架
该项目使用以下关键技术和框架:
- JavaScript:用于实现检查和报告功能的核心语言。
- Node.js:用于在服务器端运行 JavaScript 代码。
- Grunt:一个基于 Node.js 的任务运行器,用于自动化构建过程。
- PhantomJS 或 Puppeteer:可选的 headless 浏览器工具,用于在命令行中运行 HTML_CodeSniffer。
- JSDom:一个 JavaScript 库,用于在 Node.js 环境中模拟 DOM。
项目安装和配置的准备工作和详细的安装步骤
准备工作
在开始安装 HTML_CodeSniffer 之前,请确保您的系统已经安装以下软件:
- Node.js(建议版本 6.0 或更高)
- npm(Node.js 包管理器)
- Grunt CLI(如果尚未安装)
安装步骤
-
克隆项目仓库
打开命令行工具,使用以下命令克隆项目仓库到本地目录:
git clone https://github.com/squizlabs/HTML_CodeSniffer.git -
安装依赖
进入项目目录,使用 npm 安装项目所需的依赖:
cd HTML_CodeSniffer npm install -
构建审计器
使用 Grunt 构建审计器。在项目目录中运行以下命令:
grunt build构建完成后,您将在
build目录中找到审计器文件。 -
配置审计器
将审计器文件移动到 Web 可访问的位置,或者创建一个符号链接到
build目录。然后,从 HTML_CodeSniffer 网站获取审计器书签代码,将起始目录替换为您本地 URL,并保存为新的书签代码。
-
使用命令行处理
如果您希望使用命令行处理 HTML_CodeSniffer,您可以选择安装 PhantomJS 或使用 Puppeteer。
-
安装 PhantomJS:
npm install -g phantomjs-prebuilt -
使用 Puppeteer:
npm i puppeteer-core
请参考项目文档中的示例代码,了解如何使用这些工具。
-
-
使用 Node.js 和 JSDom
如果您希望在服务器端使用 HTML_CodeSniffer 而不使用 headless 浏览器,可以安装 JSDom:
npm install jsdom然后,使用 Node.js 运行以下示例脚本:
var jsdom = require('jsdom'); var { JSDOM } = jsdom; var fs = require('fs'); var HTMLCS = fs.readFileSync('./build/HTMLCS.js', 'utf-8'); var vConsole = new jsdom.VirtualConsole(); vConsole.on('log', function(message) { console.log(message); }); var dom = new JSDOM('<img src="test.png" />', { runScripts: 'dangerously', virtualConsole: vConsole }); dom.window.eval(HTMLCS); dom.window.HTMLCS_RUNNER.run('WCAG2AA');
通过以上步骤,您应该能够成功安装和配置 HTML_CodeSniffer,并根据您的需求使用它来检查 HTML 文档的可访问性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C089
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00