D-AMP_Toolbox 的安装和配置教程
2025-05-18 14:29:40作者:董宙帆
项目基础介绍
D-AMP_Toolbox 是一个开源项目,主要包含了基于 MATLAB 和 TensorFlow 实现的信号重建和图像恢复算法。该项目主要用于稀疏信号的压缩感知(Compressive Sensing)和图像的压缩相位恢复(Compressive Phase Retrieval)等研究领域。主要编程语言为 MATLAB 和 Python。
项目使用的关键技术和框架
- MATLAB: 用于实现和测试信号处理算法的主要环境。
- TensorFlow: 用于训练和测试深度学习网络,特别是用于图像去噪的卷积神经网络。
- 稀疏重建算法: 包括 D-AMP、D-VAMP、D-prGAMP 等算法。
- 深度学习网络: 包括 DnCNN 和基于 SURE 损失函数的网络训练。
准备工作
在开始安装之前,请确保您的系统中已经安装以下软件:
- MATLAB (版本要求请参考项目文档)
- Python (建议使用 Anaconda 进行环境管理)
- TensorFlow (请确保安装了正确版本的 TensorFlow)
- Matconvnet (用于 MATLAB 中的深度学习网络)
以下是详细安装步骤:
1. 克隆项目
首先,您需要在您的计算机上克隆这个项目。打开命令行窗口,执行以下命令:
git clone https://github.com/ricedsp/D-AMP_Toolbox.git
2. 配置 MATLAB 环境
- 将下载的项目文件放置在 MATLAB 的工作路径中。
- 在 MATLAB 中,运行项目中的
startup.m
脚本,以配置必要的环境变量和路径。
3. 配置 Python 环境
- 创建一个新的 Anaconda 环境并激活它(例如,使用
conda create -n myenv python=3.7
)。 - 在该环境中安装 TensorFlow 和其他必要的 Python 包。
4. 安装依赖项
- 根据项目文档,安装必要的 MATLAB 和 Python 依赖项。
- 对于 MATLAB,确保安装了所有需要的工具箱。
- 对于 Python,使用
pip install
命令安装所需的库。
5. 下载训练模型和数据
- 根据项目文档中的说明,从指定的链接下载预训练的模型和数据集。
- 将下载的模型和数据放置在项目指定的目录中。
6. 测试安装
- 运行项目中的示例脚本,以验证安装是否成功。
- 如果示例脚本能够正常运行,并给出预期结果,则表明安装和配置成功。
以上就是 D-AMP_Toolbox 的详细安装和配置指南。按照上述步骤操作后,您应该能够开始使用该项目进行研究和开发了。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~054CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0378- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
328
377

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
28
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58