BrowserBase Stagehand v1.14.0 版本技术解析:性能优化与新模型支持
BrowserBase Stagehand 是一个专注于网页自动化与智能交互的JavaScript库,它通过结合DOM操作与大型语言模型(LLM)的能力,为开发者提供了强大的网页内容提取与自动化操作工具。最新发布的v1.14.0版本带来了一系列重要改进,特别是在性能优化、模型支持扩展和功能增强方面。
核心性能优化
本次版本最显著的改进之一是act()函数的底层重构。现在,act()可以选择性地使用observe()作为其底层实现,这一改变带来了显著的性能提升。开发者可以通过设置slowDomBasedAct: false来启用这一优化路径。
对于DOM处理任务,新版本引入了超时控制机制。开发者现在可以通过timeoutMs参数为基于DOM的act()操作设置超时,或者在Stagehand配置中全局设置actTimeoutMs参数,这为长时间运行的操作提供了更好的控制能力。
精准内容提取增强
textExtract功能得到了重要升级,现在支持通过XPath选择器进行目标内容提取。这一改进允许开发者精确指定需要处理的DOM元素范围,不仅减少了处理的数据量,还降低了token消耗并提高了处理速度。例如,在提取天气预报数据时,可以精确定位到包含天气信息的表格区域,避免处理整个页面内容。
新增的无参数extract()调用方式提供了获取网页完整文本表示的确定性方法,为需要完整页面内容分析的使用场景提供了便利。
扩展的模型支持
v1.14.0版本显著扩展了支持的LLM模型范围:
-
新增了对
gpt-4.5-preview和claude-3-7-sonnet-latest模型的支持,为开发者提供了更多先进的模型选择。 -
引入了Cerebras LLM原生支持,包括
cerebras-llama-3.3-70b和cerebras-llama-3.1-8b模型,只需设置CEREBRAS_API_KEY环境变量即可使用。 -
新增了Groq LLM支持,包括
groq-llama-3.3-70b-versatile和groq-llama-3.3-70b-specdec模型,同样需要配置GROQ_API_KEY环境变量。
这些新模型的加入大大扩展了Stagehand在不同场景下的适用性和灵活性。
稳定性与兼容性改进
-
修复了
actHandler的5秒超时问题,提高了长时间操作的可靠性。 -
增强了多页面支持,改进了上下文管理机制,使Stagehand能够更好地处理涉及多个页面的复杂场景。
-
改进了
act到observe管道的向后兼容性,确保现有代码能够平滑过渡。 -
修复了目标内容提取中的滚动和分块问题,提高了内容提取的准确性。
-
增强了会话管理,妥善处理了尝试关闭已关闭会话的情况。
-
改进了错误处理,当从"not-supported"的ObserveResult执行
act时,现在会抛出信息更明确的错误。
技术实现细节
在底层实现上,v1.14.0版本对DOM处理流程进行了多项优化:
-
动态调整块大小机制确保了大页面内容的高效处理。
-
改进了
processAllOfDom对动态内容的处理能力,确保能够正确滚动到页面底部。 -
增强了对XPath选择器的兼容性,现在支持带或不带"xpath="前缀的XPath表达式。
-
完善了资源清理机制,在进程退出时正确调用
end()方法。
这些改进共同提升了Stagehand在处理复杂网页时的稳定性和效率,使其成为网页自动化与内容提取领域更加强大的工具。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00