【亲测免费】 OpenScholar 使用教程
2026-01-30 04:29:57作者:吴年前Myrtle
1. 项目介绍
OpenScholar 是一个基于检索增强的语言模型(LM)的开源项目,旨在帮助科学家有效地浏览和综合科学文献。它通过首先在文献中搜索相关论文,然后基于这些来源生成响应,来回答用户的查询。
2. 项目快速启动
在开始之前,请确保您的环境中已安装以下依赖:
conda create -n os_env python=3.10.0
conda activate os_env
pip install -r requirements.txt
python -m spacy download en_core_web_sm
同时,您需要设置以下 API 密钥:
export S2_API_KEY=YOUR_S2_API_KEY
获取 API 密钥的指导请参考 Semantic Scholar API 页面。
接下来,运行 OpenScholar � inferencing 的基本命令如下:
python run.py \
--input_file YOUR_INPUT_FILE \
--model_name OpenScholar/Llama-3.1_OpenScholar-8B \
--use_contexts \
--output_file OUTPUT_FILE_PATH \
--top_n 10 --llama3 --zero_shot
请将 YOUR_INPUT_FILE 替换为您的输入文件路径,OUTPUT_FILE_PATH 替换为输出文件路径。
3. 应用案例和最佳实践
- 标准 RAG 管道:使用 top 10 的结果。
python run.py \
--input_file YOUR_INPUT_FILE \
--model_name OpenScholar/Llama-3.1_OpenScholar-8B \
--use_contexts \
--output_file OUTPUT_FILE_PATH \
--top_n 10 --llama3 --zero_shot
- Retriever+ Reranker 管道:使用重排模型来重排 top_n 段落。
python run.py \
--input_file YOUR_INPUT_FILE \
--model_name OpenScholar/Llama-3.1_OpenScholar-8B \
--use_contexts \
--ranking_ce \
--reranker OpenScholar/OpenScholar_Reranker \
--output_file OUTPUT_FILE_PATH \
--top_n 10 --llama3 --zero_shot
- Open Retriever 自省生成管道:使用自反馈循环。
python run.py \
--input_file YOUR_INPUT_FILE \
--model_name OpenScholar/Llama-3.1_OpenScholar-8B \
--use_contexts \
--output_file OUTPUT_FILE_NAME \
--top_n 10 --llama3 --use_contexts \
--ranking_ce --reranker OpenScholar/OpenScholar_Reranker \
--posthoc --feedack --ss_retriever \
--use_abstract --norm_cite --zero_shot --max_per_paper 3
- 使用专有 LLM:结合专有大型语言模型。
python run.py \
--input_file YOUR_INPUT_FILE \
--model_name "gpt-4o" \
--api "openai" \
--api_key_fp PATH_TO_YOUR_OPEN_AI_KEY \
--use_contexts \
--output_file OUTPUT_FILE_PATH \
--top_n 10 --llama3 --zero_shot
4. 典型生态项目
OpenScholar 的生态系统包括多个相关项目,例如:
- ScholarQABench:用于在 ScholarQABench 上运行评估的仓库。
- OpenScholar_ExpertEval:用于专家评估界面和结果的仓库。
这些项目共同构成了 OpenScholar 的强大生态,为科学文献的综合提供了全面的工具和资源。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248