Umami分析工具中的漏斗分析通配符支持实现
在网站数据分析领域,漏斗分析是一种重要的用户行为分析方法。Umami作为一款开源的网站分析工具,近期在其2.11.0版本中实现了漏斗分析步骤支持通配符的功能,这一改进显著提升了分析灵活性。
功能背景
传统漏斗分析要求精确匹配每个步骤的URL路径,这在分析具有动态路径的页面时存在局限性。例如,当用户访问不同博客文章时,路径可能呈现为/blog/1、/blog/2等形式。旧版Umami需要为每篇文章单独设置漏斗步骤,而通配符支持则允许使用/blog/*这样的模式匹配所有博客文章。
技术实现要点
-
SQL查询改造:在PostgreSQL和MySQL版本中,修改了漏斗查询语句,将精确匹配(=)改为使用LIKE操作符配合通配符(%),实现了模式匹配功能。
-
ClickHouse适配:对于使用ClickHouse作为数据库的用户,同样实现了相应的模式匹配逻辑,确保功能在不同数据库后端的一致性。
-
用户界面优化:在漏斗配置界面增加了通配符使用提示,帮助用户正确使用*符号进行模式匹配。
使用场景示例
-
博客阅读分析:可以设置/blog→/blog/*→/comment的漏斗,追踪从博客列表到具体文章再到评论的完整路径。
-
产品详情页分析:对于电子商务网站,可使用/product→/product/*→/checkout的漏斗分析商品浏览到购买的转化率。
-
分类页面分析:通配符支持也适用于/category/*这样的路径,可以分析整个分类下的用户行为。
技术价值
这一改进使Umami的漏斗分析能力更加接近商业分析工具的水平,特别适合内容管理系统(CMS)和电子商务网站等具有规律性URL结构的场景。用户不再需要为每个动态页面单独设置漏斗步骤,大大减少了配置工作量,同时提供了更全面的分析视角。
对于技术团队而言,这一功能的实现也展示了Umaki良好的可扩展性,通过相对较小的代码改动就能带来显著的功能提升,体现了项目的良好架构设计。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00