首页
/ Umami分析工具中的漏斗分析通配符支持实现

Umami分析工具中的漏斗分析通配符支持实现

2025-05-08 10:16:54作者:裘旻烁

在网站数据分析领域,漏斗分析是一种重要的用户行为分析方法。Umami作为一款开源的网站分析工具,近期在其2.11.0版本中实现了漏斗分析步骤支持通配符的功能,这一改进显著提升了分析灵活性。

功能背景

传统漏斗分析要求精确匹配每个步骤的URL路径,这在分析具有动态路径的页面时存在局限性。例如,当用户访问不同博客文章时,路径可能呈现为/blog/1、/blog/2等形式。旧版Umami需要为每篇文章单独设置漏斗步骤,而通配符支持则允许使用/blog/*这样的模式匹配所有博客文章。

技术实现要点

  1. SQL查询改造:在PostgreSQL和MySQL版本中,修改了漏斗查询语句,将精确匹配(=)改为使用LIKE操作符配合通配符(%),实现了模式匹配功能。

  2. ClickHouse适配:对于使用ClickHouse作为数据库的用户,同样实现了相应的模式匹配逻辑,确保功能在不同数据库后端的一致性。

  3. 用户界面优化:在漏斗配置界面增加了通配符使用提示,帮助用户正确使用*符号进行模式匹配。

使用场景示例

  1. 博客阅读分析:可以设置/blog→/blog/*→/comment的漏斗,追踪从博客列表到具体文章再到评论的完整路径。

  2. 产品详情页分析:对于电子商务网站,可使用/product→/product/*→/checkout的漏斗分析商品浏览到购买的转化率。

  3. 分类页面分析:通配符支持也适用于/category/*这样的路径,可以分析整个分类下的用户行为。

技术价值

这一改进使Umami的漏斗分析能力更加接近商业分析工具的水平,特别适合内容管理系统(CMS)和电子商务网站等具有规律性URL结构的场景。用户不再需要为每个动态页面单独设置漏斗步骤,大大减少了配置工作量,同时提供了更全面的分析视角。

对于技术团队而言,这一功能的实现也展示了Umaki良好的可扩展性,通过相对较小的代码改动就能带来显著的功能提升,体现了项目的良好架构设计。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.97 K
kernelkernel
deepin linux kernel
C
22
6
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
426
34
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
239
9
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
988
394
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
936
554
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69