首页
/ ColPali模型在ViDoRe-v2数据集上的评估结果差异分析

ColPali模型在ViDoRe-v2数据集上的评估结果差异分析

2025-07-08 08:34:34作者:幸俭卉

ColPali作为一款开源的文档检索模型,其最新版本v1.3在ViDoRe-v2基准测试中表现优异。然而,开发者在复现模型在esg_reports_human_labeled_v2数据集上的评估结果时,发现与官方报告存在显著差异。本文将深入分析这一现象的技术原因,并探讨文档检索评估中的关键注意事项。

评估结果差异现象

当使用ColPali-v1.3模型在ViDoRe-v2的esg_reports_human_labeled_v2数据集上进行评估时,开发者获得的ndcg_at_5分数为0.59127,而官方报告显示为0.511。这种差异在其他三个数据集的评估中并未出现,表明问题可能具有特定性。

技术原因分析

  1. 数据集规模因素:esg_reports_human_labeled_v2是一个相对较小的数据集,这使得评估结果更容易受到随机波动和技术环境差异的影响。小数据集对模型性能评估的稳定性提出了更高要求。

  2. 技术环境差异:不同版本的PyTorch、CUDA和Transformers库可能导致模型输出的细微变化。这些变化在小数据集上会被放大,从而造成评估指标的显著差异。

  3. 评估框架选择:官方推荐使用MTEB(大规模文本嵌入基准)框架进行评估,该框架提供了更稳定和标准化的评估环境。在MTEB框架下,ColPali-v1.3在该数据集上的ndcg_at_5分数为60.45,与开发者自行评估的结果更为接近。

文档检索评估的最佳实践

  1. 评估框架标准化:建议统一使用MTEB框架进行评估,以确保结果的可比性和可复现性。该框架经过了广泛验证,能够减少环境因素带来的评估偏差。

  2. 数据集特性理解:对于包含相似格式图像文档的数据集(如ESG报告),模型输出的小幅数值变化可能导致检索结果的较大波动。评估时需要特别关注这类数据集的特性。

  3. 版本控制:确保评估时使用的模型版本、数据集版本和评估代码版本与目标结果报告完全一致,避免因版本差异导致的不可比性。

结论与建议

ColPali-v1.3在ViDoRe-v2基准测试中的表现差异主要源于小数据集的敏感性以及评估环境的技术差异。开发者在使用文档检索模型进行评估时,应当:

  1. 优先采用MTEB等标准化评估框架
  2. 注意控制评估环境的一致性
  3. 对于小规模数据集的结果保持谨慎态度
  4. 关注官方发布的最新评估结果和更新说明

通过遵循这些实践,可以更准确地评估和比较不同文档检索模型的性能,为实际应用提供可靠的技术参考。

登录后查看全文
热门项目推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
52
461
kernelkernel
deepin linux kernel
C
22
5
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.09 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
179
264
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
607
59
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4