Ragas项目中的测试集生成与评估状态持久化方案
2025-05-26 21:38:36作者:苗圣禹Peter
背景介绍
在Ragas项目中,测试集的生成和评估过程通常需要消耗大量计算资源和时间,特别是在使用商业API如OpenAI时,不仅会产生高昂的费用,还可能因为网络问题或程序异常导致长时间运行的作业中断。这种情况下,如果系统没有状态持久化机制,所有中间结果都会丢失,用户不得不从头开始,造成时间和资金的巨大浪费。
核心问题分析
测试集生成和评估过程中的几个关键环节特别需要状态保存:
- 文档嵌入向量的生成
- 向量化文档存储的构建
- 问题生成过程的中间状态
- 问题评估的中间结果
这些环节中任何一个出现中断,都会导致整个流程需要重新开始,特别是当处理大量文档或生成大量问题时,这种风险尤为突出。
现有解决方案
Ragas项目目前已经提供了一些机制来缓解这个问题:
-
异常捕获机制:默认配置
raise_exceptions=False
可以捕获评估过程中的大多数异常,防止程序意外终止。 -
分阶段测试集生成:
- 首先生成知识图谱转换(transforms),这个中间结果可以保存
- 然后基于保存的转换结果进行问题生成
-
最新改进:项目最近增加了对LLM和嵌入调用的缓存支持,使用类似diskcache的机制来避免重复计算。
技术实现建议
对于希望实现更健壮的持久化机制的用户,可以考虑以下技术方案:
- 分步执行测试集生成:
# 1. 生成转换图并保存
transforms = generate_transforms(documents)
save_to_disk(transforms, "transforms.pkl")
# 2. 从保存的文件加载并生成问题
loaded_transforms = load_from_disk("transforms.pkl")
testset = generate_questions(loaded_transforms)
- 使用缓存中间结果:
from ragas.llms import cache
# 启用缓存
cache.enable()
cache.set_cache_dir("./llm_cache")
# 后续的LLM调用结果会自动缓存
- 定期检查点保存:
# 在长时间运行的评估中定期保存状态
for i, question in enumerate(questions):
result = evaluate(question)
if i % 10 == 0: # 每10个问题保存一次
save_checkpoint(results)
最佳实践
-
对于大规模测试集生成,建议拆分为多个小批次进行,每批完成后保存中间结果。
-
在使用商业API时,充分利用缓存机制可以显著降低成本。
-
考虑使用try-catch块包装关键操作,配合状态保存实现断点续跑功能。
-
监控API使用情况和程序运行状态,设置合理的超时和重试机制。
未来展望
Ragas团队正在持续改进状态持久化功能,未来版本可能会提供:
- 内置的自动检查点机制
- 更细粒度的进度保存选项
- 分布式环境下的状态同步支持
- 更智能的缓存管理和过期策略
通过合理利用现有功能和遵循最佳实践,用户可以显著提高大规模测试集生成和评估任务的可靠性,避免因意外中断导致的资源浪费。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.28 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
527
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
214
288