Ragas项目中的测试集生成与评估状态持久化方案
2025-05-26 21:38:36作者:苗圣禹Peter
背景介绍
在Ragas项目中,测试集的生成和评估过程通常需要消耗大量计算资源和时间,特别是在使用商业API如OpenAI时,不仅会产生高昂的费用,还可能因为网络问题或程序异常导致长时间运行的作业中断。这种情况下,如果系统没有状态持久化机制,所有中间结果都会丢失,用户不得不从头开始,造成时间和资金的巨大浪费。
核心问题分析
测试集生成和评估过程中的几个关键环节特别需要状态保存:
- 文档嵌入向量的生成
- 向量化文档存储的构建
- 问题生成过程的中间状态
- 问题评估的中间结果
这些环节中任何一个出现中断,都会导致整个流程需要重新开始,特别是当处理大量文档或生成大量问题时,这种风险尤为突出。
现有解决方案
Ragas项目目前已经提供了一些机制来缓解这个问题:
-
异常捕获机制:默认配置
raise_exceptions=False
可以捕获评估过程中的大多数异常,防止程序意外终止。 -
分阶段测试集生成:
- 首先生成知识图谱转换(transforms),这个中间结果可以保存
- 然后基于保存的转换结果进行问题生成
-
最新改进:项目最近增加了对LLM和嵌入调用的缓存支持,使用类似diskcache的机制来避免重复计算。
技术实现建议
对于希望实现更健壮的持久化机制的用户,可以考虑以下技术方案:
- 分步执行测试集生成:
# 1. 生成转换图并保存
transforms = generate_transforms(documents)
save_to_disk(transforms, "transforms.pkl")
# 2. 从保存的文件加载并生成问题
loaded_transforms = load_from_disk("transforms.pkl")
testset = generate_questions(loaded_transforms)
- 使用缓存中间结果:
from ragas.llms import cache
# 启用缓存
cache.enable()
cache.set_cache_dir("./llm_cache")
# 后续的LLM调用结果会自动缓存
- 定期检查点保存:
# 在长时间运行的评估中定期保存状态
for i, question in enumerate(questions):
result = evaluate(question)
if i % 10 == 0: # 每10个问题保存一次
save_checkpoint(results)
最佳实践
-
对于大规模测试集生成,建议拆分为多个小批次进行,每批完成后保存中间结果。
-
在使用商业API时,充分利用缓存机制可以显著降低成本。
-
考虑使用try-catch块包装关键操作,配合状态保存实现断点续跑功能。
-
监控API使用情况和程序运行状态,设置合理的超时和重试机制。
未来展望
Ragas团队正在持续改进状态持久化功能,未来版本可能会提供:
- 内置的自动检查点机制
- 更细粒度的进度保存选项
- 分布式环境下的状态同步支持
- 更智能的缓存管理和过期策略
通过合理利用现有功能和遵循最佳实践,用户可以显著提高大规模测试集生成和评估任务的可靠性,避免因意外中断导致的资源浪费。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
52
461

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.09 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
607
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4