Ragas项目中的测试集生成与评估状态持久化方案
2025-05-26 22:15:50作者:苗圣禹Peter
背景介绍
在Ragas项目中,测试集的生成和评估过程通常需要消耗大量计算资源和时间,特别是在使用商业API如OpenAI时,不仅会产生高昂的费用,还可能因为网络问题或程序异常导致长时间运行的作业中断。这种情况下,如果系统没有状态持久化机制,所有中间结果都会丢失,用户不得不从头开始,造成时间和资金的巨大浪费。
核心问题分析
测试集生成和评估过程中的几个关键环节特别需要状态保存:
- 文档嵌入向量的生成
- 向量化文档存储的构建
- 问题生成过程的中间状态
- 问题评估的中间结果
这些环节中任何一个出现中断,都会导致整个流程需要重新开始,特别是当处理大量文档或生成大量问题时,这种风险尤为突出。
现有解决方案
Ragas项目目前已经提供了一些机制来缓解这个问题:
-
异常捕获机制:默认配置
raise_exceptions=False可以捕获评估过程中的大多数异常,防止程序意外终止。 -
分阶段测试集生成:
- 首先生成知识图谱转换(transforms),这个中间结果可以保存
- 然后基于保存的转换结果进行问题生成
-
最新改进:项目最近增加了对LLM和嵌入调用的缓存支持,使用类似diskcache的机制来避免重复计算。
技术实现建议
对于希望实现更健壮的持久化机制的用户,可以考虑以下技术方案:
- 分步执行测试集生成:
# 1. 生成转换图并保存
transforms = generate_transforms(documents)
save_to_disk(transforms, "transforms.pkl")
# 2. 从保存的文件加载并生成问题
loaded_transforms = load_from_disk("transforms.pkl")
testset = generate_questions(loaded_transforms)
- 使用缓存中间结果:
from ragas.llms import cache
# 启用缓存
cache.enable()
cache.set_cache_dir("./llm_cache")
# 后续的LLM调用结果会自动缓存
- 定期检查点保存:
# 在长时间运行的评估中定期保存状态
for i, question in enumerate(questions):
result = evaluate(question)
if i % 10 == 0: # 每10个问题保存一次
save_checkpoint(results)
最佳实践
-
对于大规模测试集生成,建议拆分为多个小批次进行,每批完成后保存中间结果。
-
在使用商业API时,充分利用缓存机制可以显著降低成本。
-
考虑使用try-catch块包装关键操作,配合状态保存实现断点续跑功能。
-
监控API使用情况和程序运行状态,设置合理的超时和重试机制。
未来展望
Ragas团队正在持续改进状态持久化功能,未来版本可能会提供:
- 内置的自动检查点机制
- 更细粒度的进度保存选项
- 分布式环境下的状态同步支持
- 更智能的缓存管理和过期策略
通过合理利用现有功能和遵循最佳实践,用户可以显著提高大规模测试集生成和评估任务的可靠性,避免因意外中断导致的资源浪费。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
412
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
342
146